
Jupyter Notebook Documentation
Release 5.0.0.dev

https://jupyter.org

February 15, 2016

User Documentation

1 The Jupyter Notebook 3

2 UI Components 9

3 Config file and command line options 13

4 Running a notebook server 21

5 Security in Jupyter notebooks 25

6 Configuring the notebook frontend 29

7 Extending the Notebook 31

8 Want to contribute? 39

9 Examples and Tutorials 43

10 Jupyter notebook changelog 45

i

ii

Jupyter Notebook Documentation, Release 5.0.0.dev

What’s New in Jupyter Notebook

Release 4.1.0
Release Announcement

• Cell toolbar selector moved to View menu
• Restart & Run All Cells added to Kernel menu
• Multiple-cell selection and actions including cut, copy, paste and execute
• Command palette added for executing Jupyter actions
• Find and replace added to Edit menu

To upgrade to the release: pip install notebook --upgrade or conda upgrade notebook

User Documentation 1

https://blog.jupyter.org/2016/01/08/notebook-4-1-release/

Jupyter Notebook Documentation, Release 5.0.0.dev

2 User Documentation

CHAPTER 1

The Jupyter Notebook

1.1 Introduction

The notebook extends the console-based approach to interactive computing in a qualitatively new direction, providing a
web-based application suitable for capturing the whole computation process: developing, documenting, and executing
code, as well as communicating the results. The Jupyter notebook combines two components:

A web application: a browser-based tool for interactive authoring of documents which combine explanatory text,
mathematics, computations and their rich media output.

Notebook documents: a representation of all content visible in the web application, including inputs and outputs of
the computations, explanatory text, mathematics, images, and rich media representations of objects.

See also:

See the installation guide on how to install the notebook and its dependencies.

1.1.1 Main features of the web application

• In-browser editing for code, with automatic syntax highlighting, indentation, and tab completion/introspection.

• The ability to execute code from the browser, with the results of computations attached to the code which
generated them.

• Displaying the result of computation using rich media representations, such as HTML, LaTeX, PNG, SVG, etc.
For example, publication-quality figures rendered by the matplotlib library, can be included inline.

• In-browser editing for rich text using the Markdown markup language, which can provide commentary for the
code, is not limited to plain text.

• The ability to easily include mathematical notation within markdown cells using LaTeX, and rendered natively
by MathJax.

1.1.2 Notebook documents

Notebook documents contains the inputs and outputs of a interactive session as well as additional text that accompanies
the code but is not meant for execution. In this way, notebook files can serve as a complete computational record of a
session, interleaving executable code with explanatory text, mathematics, and rich representations of resulting objects.
These documents are internally JSON files and are saved with the .ipynb extension. Since JSON is a plain text
format, they can be version-controlled and shared with colleagues.

3

http://jupyter.readthedocs.org/en/latest/install.html#install
http://matplotlib.org
http://daringfireball.net/projects/markdown/syntax
http://www.mathjax.org/
http://en.wikipedia.org/wiki/JSON

Jupyter Notebook Documentation, Release 5.0.0.dev

Notebooks may be exported to a range of static formats, including HTML (for example, for blog posts), reStructured-
Text, LaTeX, PDF, and slide shows, via the nbconvert command.

Furthermore, any .ipynb notebook document available from a public URL can be shared via the Jupyter Notebook
Viewer (nbviewer). This service loads the notebook document from the URL and renders it as a static web page.
The results may thus be shared with a colleague, or as a public blog post, without other users needing to install the
Jupyter notebook themselves. In effect, nbviewer is simply nbconvert as a web service, so you can do your own static
conversions with nbconvert, without relying on nbviewer.

See also:

Details on the notebook JSON file format

1.2 Starting the notebook server

You can start running a notebook server from the command line using the following command:

jupyter notebook

This will print some information about the notebook server in your console, and open a web browser to the URL of
the web application (by default, http://127.0.0.1:8888).

The landing page of the Jupyter notebook web application, the dashboard, shows the notebooks currently available
in the notebook directory (by default, the directory from which the notebook server was started).

You can create new notebooks from the dashboard with the New Notebook button, or open existing ones by clicking
on their name. You can also drag and drop .ipynb notebooks and standard .py Python source code files into the
notebook list area.

When starting a notebook server from the command line, you can also open a particular notebook directly, bypassing
the dashboard, with jupyter notebook my_notebook.ipynb. The .ipynb extension is assumed if no
extension is given.

When you are inside an open notebook, the File | Open... menu option will open the dashboard in a new browser tab,
to allow you to open another notebook from the notebook directory or to create a new notebook.

Note: You can start more than one notebook server at the same time, if you want to work on notebooks in different
directories. By default the first notebook server starts on port 8888, and later notebook servers search for ports near
that one. You can also manually specify the port with the --port option.

1.2.1 Creating a new notebook document

A new notebook may be created at any time, either from the dashboard, or using the File → New menu option from
within an active notebook. The new notebook is created within the same directory and will open in a new browser tab.
It will also be reflected as a new entry in the notebook list on the dashboard.

1.2.2 Opening notebooks

An open notebook has exactly one interactive session connected to an IPython kernel, which will execute code sent
by the user and communicate back results. This kernel remains active if the web browser window is closed, and
reopening the same notebook from the dashboard will reconnect the web application to the same kernel. In the
dashboard, notebooks with an active kernel have a Shutdown button next to them, whereas notebooks without an
active kernel have a Delete button in its place.

4 Chapter 1. The Jupyter Notebook

http://nbconvert.readthedocs.org/en/latest/
http://nbviewer.jupyter.org
http://nbviewer.jupyter.org
http://nbconvert.readthedocs.org/en/latest/
http://nbformat.readthedocs.org/en/latest/format_description.html#notebook-file-format
http://ipython.org/ipython-doc/dev/overview.html#ipythonzmq

Jupyter Notebook Documentation, Release 5.0.0.dev

Other clients may connect to the same underlying IPython kernel. The notebook server always prints to the terminal
the full details of how to connect to each kernel, with messages such as the following:

[NotebookApp] Kernel started: 87f7d2c0-13e3-43df-8bb8-1bd37aaf3373

This long string is the kernel’s ID which is sufficient for getting the information necessary to connect to the kernel.
You can also request this connection data by running the %connect_info magic. This will print the same ID
information as well as the content of the JSON data structure it contains.

You can then, for example, manually start a Qt console connected to the same kernel from the command line, by
passing a portion of the ID:

$ ipython qtconsole --existing 87f7d2c0

Without an ID, --existing will connect to the most recently started kernel. This can also be done by running the
%qtconsole magic in the notebook.

See also:

Decoupled two-process model

1.3 Notebook user interface

When you create a new notebook document, you will be presented with the notebook name, a menu bar, a toolbar
and an empty code cell.

notebook name: The name of the notebook document is displayed at the top of the page, next to the IP[y]:
Notebook logo. This name reflects the name of the .ipynb notebook document file. Clicking on the notebook
name brings up a dialog which allows you to rename it. Thus, renaming a notebook from “Untitled0” to “My first
notebook” in the browser, renames the Untitled0.ipynb file to My first notebook.ipynb.

menu bar: The menu bar presents different options that may be used to manipulate the way the notebook functions.

toolbar: The tool bar gives a quick way of performing the most-used operations within the notebook, by clicking on
an icon.

code cell: the default type of cell, read on for an explanation of cells

Note: As of notebook version 4.1, the user interface allows for multiple cells to be selected. The quick celltype
selector, found in the menubar, will display a dash - when multiple cells are selected to indicate that the type of
the cells in the selection might not be unique. The quick selector can still be used to change the type of the selection
and will change the type of all the currently selected cells.

1.4 Structure of a notebook document

The notebook consists of a sequence of cells. A cell is a multiline text input field, and its contents can be executed by
using Shift-Enter, or by clicking either the “Play” button the toolbar, or Cell | Run in the menu bar. The execution
behavior of a cell is determined the cell’s type. There are four types of cells: code cells, markdown cells, raw cells
and heading cells. Every cell starts off being a code cell, but its type can be changed by using a drop-down on the
toolbar (which will be “Code”, initially), or via keyboard shortcuts.

For more information on the different things you can do in a notebook, see the collection of examples.

1.3. Notebook user interface 5

http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magics-explained
http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magics-explained
http://ipython.org/ipython-doc/dev/overview.html#ipythonzmq
http://nbviewer.jupyter.org/github/jupyter/notebook/tree/master/docs/source/examples/Notebook/

Jupyter Notebook Documentation, Release 5.0.0.dev

1.4.1 Code cells

A code cell allows you to edit and write new code, with full syntax highlighting and tab completion. By default, the
language associated to a code cell is Python, but other languages, such as Julia and R, can be handled using cell
magic commands.

When a code cell is executed, code that it contains is sent to the kernel associated with the notebook. The results that
are returned from this computation are then displayed in the notebook as the cell’s output. The output is not limited to
text, with many other possible forms of output are also possible, including matplotlib figures and HTML tables
(as used, for example, in the pandas data analysis package). This is known as IPython’s rich display capability.

See also:

Rich Output example notebook

1.4.2 Markdown cells

You can document the computational process in a literate way, alternating descriptive text with code, using rich text.
In IPython this is accomplished by marking up text with the Markdown language. The corresponding cells are called
Markdown cells. The Markdown language provides a simple way to perform this text markup, that is, to specify which
parts of the text should be emphasized (italics), bold, form lists, etc.

When a Markdown cell is executed, the Markdown code is converted into the corresponding formatted rich text.
Markdown allows arbitrary HTML code for formatting.

Within Markdown cells, you can also include mathematics in a straightforward way, using standard LaTeX notation:
$...$ for inline mathematics and $$...$$ for displayed mathematics. When the Markdown cell is executed, the
LaTeX portions are automatically rendered in the HTML output as equations with high quality typography. This is
made possible by MathJax, which supports a large subset of LaTeX functionality

Standard mathematics environments defined by LaTeX and AMS-LaTeX (the amsmath package) also work, such as
\begin{equation}...\end{equation}, and \begin{align}...\end{align}. New LaTeX macros
may be defined using standard methods, such as \newcommand, by placing them anywhere between math delimiters
in a Markdown cell. These definitions are then available throughout the rest of the IPython session.

See also:

Markdown Cells example notebook

1.4.3 Raw cells

Raw cells provide a place in which you can write output directly. Raw cells are not evaluated by the notebook. When
passed through nbconvert, raw cells arrive in the destination format unmodified. For example, this allows you to type
full LaTeX into a raw cell, which will only be rendered by LaTeX after conversion by nbconvert.

1.4.4 Heading cells

If you want to provide structure for your document, you can use markdown headings. Markdown headings consist of
1 to 6 hash # signs # followed by a space and the title of your section. The markdown heading will be converted to a
clickable link for a section of the notebook. It is also used as a hint when exporting to other document formats, like
PDF. We recommend using only one markdown header in a cell and limit the cell’s content to the header text. For
flexibility of text format conversion, we suggest placing additional text in the next notebook cell.

6 Chapter 1. The Jupyter Notebook

http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magics-explained
http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magics-explained
https://nbviewer.jupyter.org/urls/raw.github.com/ipython/ipython/3.x/examples/IPython%20Kernel/Rich%20Output.ipynb
http://www.mathjax.org/
http://nbconvert.readthedocs.org/en/latest/

Jupyter Notebook Documentation, Release 5.0.0.dev

1.5 Basic workflow

The normal workflow in a notebook is, then, quite similar to a standard IPython session, with the difference that you
can edit cells in-place multiple times until you obtain the desired results, rather than having to rerun separate scripts
with the %run magic command.

Typically, you will work on a computational problem in pieces, organizing related ideas into cells and moving forward
once previous parts work correctly. This is much more convenient for interactive exploration than breaking up a
computation into scripts that must be executed together, as was previously necessary, especially if parts of them take a
long time to run.

At certain moments, it may be necessary to interrupt a calculation which is taking too long to complete. This may be
done with the Kernel | Interrupt menu option, or the Ctrl-m i keyboard shortcut. Similarly, it may be necessary or
desirable to restart the whole computational process, with the Kernel | Restart menu option or Ctrl-m . shortcut.

A notebook may be downloaded in either a .ipynb or .py file from the menu option File | Download as. Choosing
the .py option downloads a Python .py script, in which all rich output has been removed and the content of markdown
cells have been inserted as comments.

See also:

Running Code in the Jupyter Notebook example notebook

Notebook Basics example notebook

a warning about doing “roundtrip” conversions.

1.5.1 Keyboard shortcuts

All actions in the notebook can be performed with the mouse, but keyboard shortcuts are also available for the most
common ones. The essential shortcuts to remember are the following:

• Shift-Enter: run cell Execute the current cell, show output (if any), and jump to the next cell below. If
Shift-Enter is invoked on the last cell, a new code cell will also be created. Note that in the notebook,
typing Enter on its own never forces execution, but rather just inserts a new line in the current cell.
Shift-Enter is equivalent to clicking the Cell | Run menu item.

• Ctrl-Enter: run cell in-place Execute the current cell as if it were in “terminal mode”, where any output
is shown, but the cursor remains in the current cell. The cell’s entire contents are selected after execution,
so you can just start typing and only the new input will be in the cell. This is convenient for doing quick
experiments in place, or for querying things like filesystem content, without needing to create additional
cells that you may not want to be saved in the notebook.

• Alt-Enter: run cell, insert below Executes the current cell, shows the output, and inserts a new cell be-
tween the current cell and the cell below (if one exists). This is thus a shortcut for the sequence
Shift-Enter, Ctrl-m a. (Ctrl-m a adds a new cell above the current one.)

• Esc and Enter: Command mode and edit mode In command mode, you can easily navigate around the
notebook using keyboard shortcuts. In edit mode, you can edit text in cells.

For the full list of available shortcuts, click Help, Keyboard Shortcuts in the notebook menus.

1.6 Plotting

One major feature of the Jupyter notebook is the ability to display plots that are the output of running code cells.
The IPython kernel is designed to work seamlessly with the matplotlib plotting library to provide this functionality.
Specific plotting library integration is a feature of the kernel.

1.5. Basic workflow 7

https://nbviewer.jupyter.org/urls/raw.github.com/ipython/ipython/3.x/examples/Notebook/Running%20Code.ipynb
https://nbviewer.jupyter.org/urls/raw.github.com/ipython/ipython/3.x/examples/Notebook/Notebook%20Basics.ipynb
http://ipython.org/ipython-doc/dev/notebook/notebook.html#note-about-roundtrip
http://matplotlib.org

Jupyter Notebook Documentation, Release 5.0.0.dev

1.7 Installing kernels

For information on how to install a Python kernel, refer to the IPython install page.

Kernels for other languages can be found in the IPython wiki. They usually come with instruction what to run to make
the kernel available in the notebook.

1.8 Signing Notebooks

To prevent untrusted code from executing on users’ behalf when notebooks open, we have added a signature to the
notebook, stored in metadata. The notebook server verifies this signature when a notebook is opened. If the signature
stored in the notebook metadata does not match, javascript and HTML output will not be displayed on load, and must
be regenerated by re-executing the cells.

Any notebook that you have executed yourself in its entirety will be considered trusted, and its HTML and javascript
output will be displayed on load.

If you need to see HTML or Javascript output without re-executing, you can explicitly trust notebooks, such as those
shared with you, or those that you have written yourself prior to IPython 2.0, at the command-line with:

$ jupyter trust mynotebook.ipynb [other notebooks.ipynb]

This just generates a new signature stored in each notebook.

You can generate a new notebook signing key with:

$ jupyter trust --reset

1.9 Browser Compatibility

The Jupyter Notebook is officially supported the latest stable version the following browsers:

• Chrome

• Safari

• Firefox

The is mainly due to the notebook’s usage of WebSockets and the flexible box model.

The following browsers are unsupported:

• Safari < 5

• Firefox < 6

• Chrome < 13

• Opera (any): CSS issues, but execution might work

• Internet Explorer < 10

• Internet Explorer 10 (same as Opera)

Using Safari with HTTPS and an untrusted certificate is known to not work (websockets will fail).

8 Chapter 1. The Jupyter Notebook

http://ipython.org/install.html
https://github.com/ipython/ipython/wiki/IPython%20kernels%20for%20other%20languages

CHAPTER 2

UI Components

When opening bug reports or sending emails to the Jupyter mailing list, it is useful to know the names of different UI
components so that other developers and users have an easier time helping you diagnose your problems. This section
will familiarize you with the names of UI elements within the Notebook and the different Notebook modes.

2.1 Notebook Dashboard

When you launch jupyter notebook the first page that you encounter is the Notebook Dashboard.

2.2 Notebook Editor

Once you’ve selected a Notebook to edit, the Notebook will open in the Notebook Editor.

9

Jupyter Notebook Documentation, Release 5.0.0.dev

2.3 Interactive User Interface Tour of the Notebook

If you would like to learn more about the specific elements within the Notebook Editor, you can go through the User
Interface Tour by selecting Help in the menubar then selecting User Interface Tour.

2.3.1 Edit Mode and Notebook Editor

When a cell is in edit mode, the Cell Mode Indicator will change to reflect the cell’s state. This state is indicated by a
small pencil icon on the top right of the interface. When the cell is in command mode, there is no icon in that location.

10 Chapter 2. UI Components

Jupyter Notebook Documentation, Release 5.0.0.dev

2.4 File Editor

Now let’s say that you’ve chosen to open a Markdown file instead of a Notebook file whilst in the Notebook Dashboard.
If so, the file will be opened in the File Editor.

2.4. File Editor 11

Jupyter Notebook Documentation, Release 5.0.0.dev

12 Chapter 2. UI Components

CHAPTER 3

Config file and command line options

The notebook server can be run with a variety of command line arguments. A list of available options can be found
below in the options section.

Defaults for these options can also be set by creating a file named jupyter_notebook_config.py in your
Jupyter folder. The Jupyter folder is in your home directory, ~/.jupyter.

To create a jupyter_notebook_config.py file, with all the defaults commented out, you can use the following
command line:

$ jupyter notebook --generate-config

3.1 Options

This list of options can be generated by running the following and hitting enter:

$ jupyter notebook --help

Application.log_datefmt [Unicode] Default: ’%Y-%m-%d %H:%M:%S’

The date format used by logging formatters for %(asctime)s

Application.log_format [Unicode] Default: ’[%(name)s]%(highlevel)s %(message)s’

The Logging format template

Application.log_level [0|10|20|30|40|50|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’] Default: 30

Set the log level by value or name.

JupyterApp.answer_yes [Bool] Default: False

Answer yes to any prompts.

JupyterApp.config_file [Unicode] Default: u’’

Full path of a config file.

JupyterApp.config_file_name [Unicode] Default: u’’

Specify a config file to load.

JupyterApp.generate_config [Bool] Default: False

Generate default config file.

13

Jupyter Notebook Documentation, Release 5.0.0.dev

NotebookApp.allow_credentials [Bool] Default: False

Set the Access-Control-Allow-Credentials: true header

NotebookApp.allow_origin [Unicode] Default: ’’

Set the Access-Control-Allow-Origin header

Use ‘*’ to allow any origin to access your server.

Takes precedence over allow_origin_pat.

NotebookApp.allow_origin_pat [Unicode] Default: ’’

Use a regular expression for the Access-Control-Allow-Origin header

Requests from an origin matching the expression will get replies with:

Access-Control-Allow-Origin: origin

where origin is the origin of the request.

Ignored if allow_origin is set.

NotebookApp.base_project_url [Unicode] Default: ’/’

DEPRECATED use base_url

NotebookApp.base_url [Unicode] Default: ’/’

The base URL for the notebook server.

Leading and trailing slashes can be omitted, and will automatically be added.

NotebookApp.browser [Unicode] Default: u’’

Specify what command to use to invoke a web browser when opening the notebook. If not specified, the default
browser will be determined by the webbrowser standard library module, which allows setting of the BROWSER
environment variable to override it.

NotebookApp.certfile [Unicode] Default: u’’

The full path to an SSL/TLS certificate file.

NotebookApp.client_ca [Unicode] Default: u’’

The full path to a certificate authority certifificate for SSL/TLS client authentication.

NotebookApp.config_manager_class [Type] Default: ’notebook.services.config.manager.ConfigManager’

The config manager class to use

NotebookApp.contents_manager_class [Type] Default: ’notebook.services.contents.filemanager.FileContentsManager’

The notebook manager class to use.

NotebookApp.cookie_secret [Bytes] Default: ’’

The random bytes used to secure cookies. By default this is a new random number every time you start the
Notebook. Set it to a value in a config file to enable logins to persist across server sessions.

Note: Cookie secrets should be kept private, do not share config files with cookie_secret stored in plaintext (you
can read the value from a file).

NotebookApp.cookie_secret_file [Unicode] Default: u’’

The file where the cookie secret is stored.

14 Chapter 3. Config file and command line options

Jupyter Notebook Documentation, Release 5.0.0.dev

NotebookApp.default_url [Unicode] Default: ’/tree’

The default URL to redirect to from /

NotebookApp.enable_mathjax [Bool] Default: True

Whether to enable MathJax for typesetting math/TeX

MathJax is the javascript library Jupyter uses to render math/LaTeX. It is very large, so you may want to disable
it if you have a slow internet connection, or for offline use of the notebook.

When disabled, equations etc. will appear as their untransformed TeX source.

NotebookApp.extra_nbextensions_path [List] Default: []

extra paths to look for Javascript notebook extensions

NotebookApp.extra_static_paths [List] Default: []

Extra paths to search for serving static files.

This allows adding javascript/css to be available from the notebook server machine, or overriding individual
files in the IPython

NotebookApp.extra_template_paths [List] Default: []

Extra paths to search for serving jinja templates.

Can be used to override templates from notebook.templates.

NotebookApp.file_to_run [Unicode] Default: ’’

No description

NotebookApp.ignore_minified_js [Bool] Default: False

Use minified JS file or not, mainly use during dev to avoid JS recompilation

NotebookApp.iopub_data_rate_limit [Float] Default: 0

(bytes/sec) Maximum rate at which messages can be sent on iopub before they are limited.

NotebookApp.iopub_msg_rate_limit [Float] Default: 0

(msg/sec) Maximum rate at which messages can be sent on iopub before they are limited.

NotebookApp.ip [Unicode] Default: ’localhost’

The IP address the notebook server will listen on.

NotebookApp.jinja_environment_options [Dict] Default: {}

Supply extra arguments that will be passed to Jinja environment.

NotebookApp.jinja_template_vars [Dict] Default: {}

Extra variables to supply to jinja templates when rendering.

NotebookApp.kernel_manager_class [Type] Default: ’notebook.services.kernels.kernelmanager.MappingKernelManager’

The kernel manager class to use.

NotebookApp.kernel_spec_manager_class [Type] Default: ’jupyter_client.kernelspec.KernelSpecManager’

The kernel spec manager class to use. Should be a subclass of jupyter_client.kernelspec.KernelSpecManager.

The Api of KernelSpecManager is provisional and might change without warning between this version of
Jupyter and the next stable one.

3.1. Options 15

Jupyter Notebook Documentation, Release 5.0.0.dev

NotebookApp.keyfile [Unicode] Default: u’’

The full path to a private key file for usage with SSL/TLS.

NotebookApp.login_handler_class [Type] Default: ’notebook.auth.login.LoginHandler’

The login handler class to use.

NotebookApp.logout_handler_class [Type] Default: ’notebook.auth.logout.LogoutHandler’

The logout handler class to use.

NotebookApp.mathjax_url [Unicode] Default: ’’

The url for MathJax.js.

NotebookApp.notebook_dir [Unicode] Default: u’’

The directory to use for notebooks and kernels.

NotebookApp.open_browser [Bool] Default: True

Whether to open in a browser after starting. The specific browser used is platform dependent and deter-
mined by the python standard library webbrowser module, unless it is overridden using the –browser (Note-
bookApp.browser) configuration option.

NotebookApp.password [Unicode] Default: u’’

Hashed password to use for web authentication.

To generate, type in a python/IPython shell:

from notebook.auth import passwd; passwd()

The string should be of the form type:salt:hashed-password.

NotebookApp.port [Integer] Default: 8888

The port the notebook server will listen on.

NotebookApp.port_retries [Integer] Default: 50

The number of additional ports to try if the specified port is not available.

NotebookApp.pylab [Unicode] Default: ’disabled’

DISABLED: use %pylab or %matplotlib in the notebook to enable matplotlib.

NotebookApp.rate_limit_window [Float] Default: 1.0

(sec) Time window used to check the message and data rate limits.

NotebookApp.reraise_server_extension_failures [Bool] Default: False

Reraise exceptions encountered loading server extensions?

NotebookApp.server_extensions [List] Default: []

Python modules to load as notebook server extensions. This is an experimental API, and may change in future
releases.

NotebookApp.session_manager_class [Type] Default: ’notebook.services.sessions.sessionmanager.SessionManager’

The session manager class to use.

NotebookApp.ssl_options [Dict] Default: {}

Supply SSL options for the tornado HTTPServer. See the tornado docs for details.

16 Chapter 3. Config file and command line options

Jupyter Notebook Documentation, Release 5.0.0.dev

NotebookApp.tornado_settings [Dict] Default: {}

Supply overrides for the tornado.web.Application that the Jupyter notebook uses.

NotebookApp.trust_xheaders [Bool] Default: False

Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded-For headerssent by the up-
stream reverse proxy. Necessary if the proxy handles SSL

NotebookApp.webapp_settings [Dict] Default: {}

DEPRECATED, use tornado_settings

NotebookApp.websocket_url [Unicode] Default: ’’

The base URL for websockets, if it differs from the HTTP server (hint: it almost certainly doesn’t).

Should be in the form of an HTTP origin: ws[s]://hostname[:port]

ConnectionFileMixin.connection_file [Unicode] Default: ’’

JSON file in which to store connection info [default: kernel-<pid>.json]

This file will contain the IP, ports, and authentication key needed to connect clients to this kernel. By default,
this file will be created in the security dir of the current profile, but can be specified by absolute path.

ConnectionFileMixin.control_port [Integer] Default: 0

set the control (ROUTER) port [default: random]

ConnectionFileMixin.hb_port [Integer] Default: 0

set the heartbeat port [default: random]

ConnectionFileMixin.iopub_port [Integer] Default: 0

set the iopub (PUB) port [default: random]

ConnectionFileMixin.ip [Unicode] Default: u’’

Set the kernel’s IP address [default localhost]. If the IP address is something other than localhost, then Consoles
on other machines will be able to connect to the Kernel, so be careful!

ConnectionFileMixin.shell_port [Integer] Default: 0

set the shell (ROUTER) port [default: random]

ConnectionFileMixin.stdin_port [Integer] Default: 0

set the stdin (ROUTER) port [default: random]

ConnectionFileMixin.transport [u’tcp’|u’ipc’] Default: ’tcp’

No description

KernelManager.autorestart [Bool] Default: False

Should we autorestart the kernel if it dies.

KernelManager.kernel_cmd [List] Default: []

DEPRECATED: Use kernel_name instead.

The Popen Command to launch the kernel. Override this if you have a custom kernel. If kernel_cmd is specified
in a configuration file, Jupyter does not pass any arguments to the kernel, because it cannot make any assump-
tions about the arguments that the kernel understands. In particular, this means that the kernel does not receive
the option –debug if it given on the Jupyter command line.

3.1. Options 17

Jupyter Notebook Documentation, Release 5.0.0.dev

Session.buffer_threshold [Integer] Default: 1024

Threshold (in bytes) beyond which an object’s buffer should be extracted to avoid pickling.

Session.copy_threshold [Integer] Default: 65536

Threshold (in bytes) beyond which a buffer should be sent without copying.

Session.debug [Bool] Default: False

Debug output in the Session

Session.digest_history_size [Integer] Default: 65536

The maximum number of digests to remember.

The digest history will be culled when it exceeds this value.

Session.item_threshold [Integer] Default: 64

The maximum number of items for a container to be introspected for custom serialization. Containers larger
than this are pickled outright.

Session.key [CBytes] Default: ’’

execution key, for signing messages.

Session.keyfile [Unicode] Default: ’’

path to file containing execution key.

Session.metadata [Dict] Default: {}

Metadata dictionary, which serves as the default top-level metadata dict for each message.

Session.packer [DottedObjectName] Default: ’json’

The name of the packer for serializing messages. Should be one of ‘json’, ‘pickle’, or an import name for a
custom callable serializer.

Session.session [CUnicode] Default: u’’

The UUID identifying this session.

Session.signature_scheme [Unicode] Default: ’hmac-sha256’

The digest scheme used to construct the message signatures. Must have the form ‘hmac-HASH’.

Session.unpacker [DottedObjectName] Default: ’json’

The name of the unpacker for unserializing messages. Only used with custom functions for packer.

Session.username [Unicode] Default: u’username’

Username for the Session. Default is your system username.

MultiKernelManager.default_kernel_name [Unicode] Default: ’python2’

The name of the default kernel to start

MultiKernelManager.kernel_manager_class [DottedObjectName] Default: ’jupyter_client.ioloop.IOLoopKernelManager’

The kernel manager class. This is configurable to allow subclassing of the KernelManager for customized
behavior.

MappingKernelManager.root_dir [Unicode] Default: u’’

No description

18 Chapter 3. Config file and command line options

Jupyter Notebook Documentation, Release 5.0.0.dev

ContentsManager.checkpoints [Instance] Default: None

No description

ContentsManager.checkpoints_class [Type] Default: ’notebook.services.contents.checkpoints.Checkpoints’

No description

ContentsManager.checkpoints_kwargs [Dict] Default: {}

No description

ContentsManager.hide_globs [List] Default: [u’__pycache__’, ’*.pyc’, ’*.pyo’,
’.DS_Store’, ’*.so’, ’*.dy...

Glob patterns to hide in file and directory listings.

ContentsManager.pre_save_hook [Any] Default: None

Python callable or importstring thereof

To be called on a contents model prior to save.

This can be used to process the structure, such as removing notebook outputs or other side effects that should
not be saved.

It will be called as (all arguments passed by keyword):

hook(path=path, model=model, contents_manager=self)

• model: the model to be saved. Includes file contents. Modifying this dict will affect the file that is stored.

• path: the API path of the save destination

• contents_manager: this ContentsManager instance

ContentsManager.untitled_directory [Unicode] Default: ’Untitled Folder’

The base name used when creating untitled directories.

ContentsManager.untitled_file [Unicode] Default: ’untitled’

The base name used when creating untitled files.

ContentsManager.untitled_notebook [Unicode] Default: ’Untitled’

The base name used when creating untitled notebooks.

FileManagerMixin.use_atomic_writing [Bool] Default: True

By default notebooks are saved on disk on a temporary file and then if succefully written, it replaces the old ones.
This procedure, namely ‘atomic_writing’, causes some bugs on file system whitout operation order enforcement
(like some networked fs). If set to False, the new notebook is written directly on the old one which could fail
(eg: full filesystem or quota)

FileContentsManager.post_save_hook [Any] Default: None

Python callable or importstring thereof

to be called on the path of a file just saved.

This can be used to process the file on disk, such as converting the notebook to a script or HTML via nbconvert.

It will be called as (all arguments passed by keyword):

hook(os_path=os_path, model=model, contents_manager=instance)

• path: the filesystem path to the file just written

3.1. Options 19

Jupyter Notebook Documentation, Release 5.0.0.dev

• model: the model representing the file

• contents_manager: this ContentsManager instance

FileContentsManager.root_dir [Unicode] Default: u’’

No description

FileContentsManager.save_script [Bool] Default: False

DEPRECATED, use post_save_hook. Will be removed in Notebook 5.0

NotebookNotary.algorithm [‘sha1’|’sha224’|’sha384’|’sha256’|’sha512’|’md5’] Default: ’sha256’

The hashing algorithm used to sign notebooks.

NotebookNotary.cache_size [Integer] Default: 65535

The number of notebook signatures to cache. When the number of signatures exceeds this value, the oldest 25%
of signatures will be culled.

NotebookNotary.db_file [Unicode] Default: u’’

The sqlite file in which to store notebook signatures. By default, this will be in your Jupyter runtime directory.
You can set it to ‘:memory:’ to disable sqlite writing to the filesystem.

NotebookNotary.secret [Bytes] Default: ’’

The secret key with which notebooks are signed.

NotebookNotary.secret_file [Unicode] Default: u’’

The file where the secret key is stored.

KernelSpecManager.whitelist [Set] Default: set([])

Whitelist of allowed kernel names.

By default, all installed kernels are allowed.

20 Chapter 3. Config file and command line options

CHAPTER 4

Running a notebook server

The Jupyter notebook web application is based on a server-client structure. The notebook server uses a two-process
kernel architecture based on ZeroMQ, as well as Tornado for serving HTTP requests.

Note: By default, a notebook server runs locally at 127.0.0.1:8888 and is accessible only from localhost. You may
access the notebook server from the browser using http://127.0.0.1:8888.

This document describes how you can secure a notebook server and how to run it on a public interface.

4.1 Securing a notebook server

You can protect your notebook server with a simple single password by configuring the NotebookApp.password
setting in jupyter_notebook_config.py.

4.1.1 Prerequisite: A notebook configuration file

Check to see if you have a notebook configuration file, jupyter_notebook_config.py. The default location
for this file is your Jupyter folder in your home directory, ~/.jupyter.

If you don’t already have one, create a config file for the notebook using the following command:

$ jupyter notebook --generate-config

4.1.2 Preparing a hashed password

You can prepare a hashed password using the function notebook.auth.security.passwd():

In [1]: from notebook.auth import passwd
In [2]: passwd()
Enter password:
Verify password:
Out[2]: 'sha1:67c9e60bb8b6:9ffede0825894254b2e042ea597d771089e11aed'

Caution: passwd() when called with no arguments will prompt you to enter and verify your password
such as in the above code snippet. Although the function can also be passed a string as an argument such as
passwd(’mypassword’), please do not pass a string as an argument inside an IPython session, as it will be
saved in your input history.

21

http://ipython.org/ipython-doc/dev/overview.html#ipythonzmq
http://ipython.org/ipython-doc/dev/overview.html#ipythonzmq
http://zeromq.org
http://www.tornadoweb.org

Jupyter Notebook Documentation, Release 5.0.0.dev

4.1.3 Adding hashed password to your notebook configuration file

You can then add the hashed password to your jupyter_notebook_config.py. The default location for this
file jupyter_notebook_config.py is in your Jupyter folder in your home directory, ~/.jupyter, e.g.:

c.NotebookApp.password = u'sha1:67c9e60bb8b6:9ffede0825894254b2e042ea597d771089e11aed'

4.1.4 Using SSL for encrypted communication

When using a password, it is a good idea to also use SSL with a web certificate, so that your hashed password is not
sent unencrypted by your browser.

Important: Web security is rapidly changing and evolving. We provide this document as a convenience to the user,
and recommend that the user keep current on changes that may impact security, such as new releases of OpenSSL.
The Open Web Application Security Project (OWASP) website is a good resource on general security issues and web
practices.

You can start the notebook to communicate via a secure protocol mode by setting the certfile option to your
self-signed certificate, i.e. mycert.pem, with the command:

$ jupyter notebook --certfile=mycert.pem --keyfile mykey.key

Tip: A self-signed certificate can be generated with openssl. For example, the following command will create a
certificate valid for 365 days with both the key and certificate data written to the same file:

$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout mykey.key -out mycert.pem

When starting the notebook server, your browser may warn that your self-signed certificate is insecure or unrecognized.
If you wish to have a fully compliant self-signed certificate that will not raise warnings, it is possible (but rather
involved) to create one, as explained in detail in this tutorial.

4.2 Running a public notebook server

If you want to access your notebook server remotely via a web browser, you can do so by running a public notebook
server. For optimal security when running a public notebook server, you should first secure the server with a password
and SSL/HTTPS as described in Securing a notebook server.

Start by creating a certificate file and a hashed password, as explained in Securing a notebook server.

If you don’t already have one, create a config file for the notebook using the following command line:

$ jupyter notebook --generate-config

In the ~/.jupyter directory, edit the notebook config file, jupyter_notebook_config.py. By default, the
notebook config file has all fields commented out. The minimum set of configuration options that you should to
uncomment and edit in :file:jupyter_notebook_config.py is the following:

Set options for certfile, ip, password, and toggle off browser auto-opening
c.NotebookApp.certfile = u'/absolute/path/to/your/certificate/mycert.pem'
c.NotebookApp.keyfile = u'/absolute/path/to/your/certificate/mykey.key'
Set ip to '*' to bind on all interfaces (ips) for the public server
c.NotebookApp.ip = '*'

22 Chapter 4. Running a notebook server

https://www.owasp.org
http://arstechnica.com/security/news/2009/12/how-to-get-set-with-a-secure-sertificate-for-free.ars

Jupyter Notebook Documentation, Release 5.0.0.dev

c.NotebookApp.password = u'sha1:bcd259ccf...<your hashed password here>'
c.NotebookApp.open_browser = False

It is a good idea to set a known, fixed port for server access
c.NotebookApp.port = 9999

You can then start the notebook using the jupyter notebook command.

Important: Use ‘https’. Keep in mind that when you enable SSL support, you must access the notebook server over
https://, not over plain http://. The startup message from the server prints a reminder in the console, but it is
easy to overlook this detail and think the server is for some reason non-responsive.

When using SSL, always access the notebook server with ‘https://’.

You may now access the public server by pointing your browser to https://your.host.com:9999 where
your.host.com is your public server’s domain.

4.2.1 Firewall Setup

To function correctly, the firewall on the computer running the jupyter notebook server must be con-
figured to allow connections from client machines on the access port c.NotebookApp.port set in
:file:jupyter_notebook_config.py port to allow connections to the web interface. The firewall must also
allow connections from 127.0.0.1 (localhost) on ports from 49152 to 65535. These ports are used by the server to
communicate with the notebook kernels. The kernel communication ports are chosen randomly by ZeroMQ, and may
require multiple connections per kernel, so a large range of ports must be accessible.

4.3 Running the notebook with a customized URL prefix

The notebook dashboard, which is the landing page with an overview of the notebooks in your working directory, is
typically found and accessed at the default URL http://localhost:8888/.

If you prefer to customize the URL prefix for the notebook dashboard, you can do so through modify-
ing jupyter_notebook_config.py. For example, if you prefer that the notebook dashboard be lo-
cated with a sub-directory that contains other ipython files, e.g. http://localhost:8888/ipython/,
you can do so with configuration options like the following (see above for instructions about modifying
jupyter_notebook_config.py):

c.NotebookApp.base_url = '/ipython/'

4.4 Embedding the notebook in another website

Sometimes you may want to embed the notebook somewhere on your website, e.g. in an IFrame. To do
this, you may need to override the Content-Security-Policy to allow embedding. Assuming your website is at
https://mywebsite.example.com, you can embed the notebook on your website with the following configuration set-
ting in jupyter_notebook_config.py:

c.NotebookApp.tornado_settings = {
'headers': {

'Content-Security-Policy': "frame-ancestors 'https://mywebsite.example.com' 'self' "
}

}

4.3. Running the notebook with a customized URL prefix 23

Jupyter Notebook Documentation, Release 5.0.0.dev

When embedding the notebook in a website using an iframe, consider putting the notebook in single-tab mode. Since
the notebook opens some links in new tabs by default, single-tab mode keeps the notebook from opening additional
tabs. Adding the following to ~/.jupyter/custom/custom.js will enable single-tab mode:

define(['base/js/namespace'], function(Jupyter){
Jupyter._target = '_self';

});

4.5 Known issues

4.5.1 Proxies

When behind a proxy, especially if your system or browser is set to autodetect the proxy, the notebook web application
might fail to connect to the server’s websockets, and present you with a warning at startup. In this case, you need to
configure your system not to use the proxy for the server’s address.

For example, in Firefox, go to the Preferences panel, Advanced section, Network tab, click ‘Settings...’, and add the
address of the notebook server to the ‘No proxy for’ field.

4.5.2 Docker CMD

Using jupyter notebook as a Docker CMD results in kernels repeatedly crashing, likely due to a lack of PID
reaping. To avoid this, use the tini init as your Dockerfile ENTRYPOINT:

Add Tini. Tini operates as a process subreaper for jupyter. This prevents
kernel crashes.
ENV TINI_VERSION v0.6.0
ADD https://github.com/krallin/tini/releases/download/${TINI_VERSION}/tini /usr/bin/tini
RUN chmod +x /usr/bin/tini
ENTRYPOINT ["/usr/bin/tini", "--"]

EXPOSE 8888
CMD ["jupyter", "notebook", "--port=8888", "--no-browser", "--ip=0.0.0.0"]

24 Chapter 4. Running a notebook server

https://docs.docker.com/reference/builder/#cmd
https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://github.com/krallin/tini

CHAPTER 5

Security in Jupyter notebooks

As Jupyter notebooks become more popular for sharing and collaboration, the potential for malicious people to attempt
to exploit the notebook for their nefarious purposes increases. IPython 2.0 introduces a security model to prevent
execution of untrusted code without explicit user input.

5.1 The problem

The whole point of Jupyter is arbitrary code execution. We have no desire to limit what can be done with a notebook,
which would negatively impact its utility.

Unlike other programs, a Jupyter notebook document includes output. Unlike other documents, that output exists in a
context that can execute code (via Javascript).

The security problem we need to solve is that no code should execute just because a user has opened a notebook that
they did not write. Like any other program, once a user decides to execute code in a notebook, it is considered trusted,
and should be allowed to do anything.

5.2 Our security model

• Untrusted HTML is always sanitized

• Untrusted Javascript is never executed

• HTML and Javascript in Markdown cells are never trusted

• Outputs generated by the user are trusted

• Any other HTML or Javascript (in Markdown cells, output generated by others) is never trusted

• The central question of trust is “Did the current user do this?”

5.3 The details of trust

Jupyter notebooks store a signature in metadata, which is used to answer the question “Did the current user do this?”

This signature is a digest of the notebooks contents plus a secret key, known only to the user. The secret key is a
user-only readable file in the Jupyter profile’s security directory. By default, this is:

25

Jupyter Notebook Documentation, Release 5.0.0.dev

~/.jupyter/profile_default/security/notebook_secret

Note: The notebook secret being stored in the profile means that loading a notebook in another profile results in it
being untrusted, unless you copy or symlink the notebook secret to share it across profiles.

When a notebook is opened by a user, the server computes a signature with the user’s key, and compares it with the
signature stored in the notebook’s metadata. If the signature matches, HTML and Javascript output in the notebook
will be trusted at load, otherwise it will be untrusted.

Any output generated during an interactive session is trusted.

5.3.1 Updating trust

A notebook’s trust is updated when the notebook is saved. If there are any untrusted outputs still in the notebook, the
notebook will not be trusted, and no signature will be stored. If all untrusted outputs have been removed (either via
Clear Output or re-execution), then the notebook will become trusted.

While trust is updated per output, this is only for the duration of a single session. A notebook file on disk is either
trusted or not in its entirety.

5.3.2 Explicit trust

Sometimes re-executing a notebook to generate trusted output is not an option, either because dependencies are un-
available, or it would take a long time. Users can explicitly trust a notebook in two ways:

• At the command-line, with:

jupyter trust /path/to/notebook.ipynb

• After loading the untrusted notebook, with File / Trust Notebook

These two methods simply load the notebook, compute a new signature with the user’s key, and then store the newly
signed notebook.

5.4 Reporting security issues

If you find a security vulnerability in Jupyter, either a failure of the code to properly implement the model described
here, or a failure of the model itself, please report it to security@ipython.org.

If you prefer to encrypt your security reports, you can use this PGP public key.

5.5 Affected use cases

Some use cases that work in Jupyter 1.0 will become less convenient in 2.0 as a result of the security changes. We do
our best to minimize these annoyance, but security is always at odds with convenience.

26 Chapter 5. Security in Jupyter notebooks

mailto:security@ipython.org

Jupyter Notebook Documentation, Release 5.0.0.dev

5.5.1 Javascript and CSS in Markdown cells

While never officially supported, it had become common practice to put hidden Javascript or CSS styling in Markdown
cells, so that they would not be visible on the page. Since Markdown cells are now sanitized (by Google Caja), all
Javascript (including click event handlers, etc.) and CSS will be stripped.

We plan to provide a mechanism for notebook themes, but in the meantime styling the notebook can only be done
via either custom.css or CSS in HTML output. The latter only have an effect if the notebook is trusted, because
otherwise the output will be sanitized just like Markdown.

5.5.2 Collaboration

When collaborating on a notebook, people probably want to see the outputs produced by their colleagues’ most recent
executions. Since each collaborator’s key will differ, this will result in each share starting in an untrusted state. There
are three basic approaches to this:

• re-run notebooks when you get them (not always viable)

• explicitly trust notebooks via jupyter trust or the notebook menu (annoying, but easy)

• share a notebook secret, and use a Jupyter profile dedicated to the collaboration while working on the project.

5.5.3 Multiple profiles or machines

Since the notebook secret is stored in a profile directory by default, opening a notebook with a different profile or on
a different machine will result in a different key, and thus be untrusted. The only current way to address this is by
sharing the notebook secret. This can be facilitated by setting the configurable:

c.NotebookApp.secret_file = "/path/to/notebook_secret"

in each profile, and only sharing the secret once per machine.

5.5. Affected use cases 27

https://developers.google.com/caja

Jupyter Notebook Documentation, Release 5.0.0.dev

28 Chapter 5. Security in Jupyter notebooks

CHAPTER 6

Configuring the notebook frontend

Note: The ability to configure the notebook frontend UI and preferences is still a work in progress.

This document is a rough explanation on how you can persist some configuration options for the notebook JavaScript.

There is no exhaustive list of all the configuration options as most options are passed down to other libraries, which
means that non valid configuration can be ignored without any error messages.

6.1 How front end configuration works

The frontend configuration system works as follows:

• get a handle of a configurable JavaScript object.

• access its configuration attribute.

• update its configuration attribute with a JSON patch.

6.2 Example - Changing the notebook’s default indentation

This example explains how to change the default setting indentUnit for CodeMirror Code Cells:

var cell = Jupyter.notebook.get_selected_cell();
var config = cell.config;
var patch = {

CodeCell:{
cm_config:{indentUnit:2}

}
}

config.update(patch)

You can enter the previous snippet in your browser’s JavaScript console once. Then reload the notebook page in your
browser. Now, the preferred indent unit should be equal to two spaces. The custom setting persists and you do not
need to reissue the patch on new notebooks.

indentUnit, used in this example, is one of the many CodeMirror options which are available for configuration.

29

https://codemirror.net/doc/manual.html#option_indentUnit

Jupyter Notebook Documentation, Release 5.0.0.dev

6.3 Example - Restoring the notebook’s default indentation

If you want to restore a notebook frontend preference to its default value, you will enter a JSON patch with a null
value for the preference setting.

For example, let’s restore the indent setting indentUnit to its default of four spaces. Enter the following code
snippet in your JavaScript console:

var cell = Jupyter.notebook.get_selected_cell();
var config = cell.config;
var patch = {

CodeCell:{
cm_config:{indentUnit: null} # only change here.

}
}

config.update(patch)

Reload the notebook in your browser and the default indent should again be two spaces.

6.4 Persisting configuration settings

Under the hood, Jupyter will persist the preferred configuration settings in
~/.jupyter/nbconfig/<section>.json, with <section> taking various value depending on the
page where the configuration is issued. <section> can take various values like notebook, tree, and editor.
A common section contains configuration settings shared by all pages.

30 Chapter 6. Configuring the notebook frontend

CHAPTER 7

Extending the Notebook

Certain subsystems of the notebook server are designed to be extended or overridden by users. These documents
explain these systems, and show how to override the notebook’s defaults with your own custom behavior.

7.1 Contents API

The Jupyter Notebook web application provides a graphical interface for creating, opening, renaming, and deleting
files in a virtual filesystem.

The ContentsManager class defines an abstract API for translating these interactions into operations on a particular
storage medium. The default implementation, FileContentsManager, uses the local filesystem of the server for
storage and straightforwardly serializes notebooks into JSON. Users can override these behaviors by supplying custom
subclasses of ContentsManager.

This section describes the interface implemented by ContentsManager subclasses. We refer to this interface as the
Contents API.

7.1.1 Data Model

Filesystem Entities

ContentsManager methods represent virtual filesystem entities as dictionaries, which we refer to as models.

Models may contain the following entries:

Key Type Info
name unicode Basename of the entity.
path unicode Full (API-style) path to the entity.
type unicode The entity type. One of "notebook", "file" or "directory".
created datetime Creation date of the entity.
last_modified datetime Last modified date of the entity.
content variable The “content” of the entity. (See Below)
mimetype unicode or None The mimetype of content, if any. (See Below)
format unicode or None The format of content, if any. (See Below)

Certain model fields vary in structure depending on the type field of the model. There are three model types:
notebook, file, and directory .

• notebook models

– The format field is always "json".

31

Jupyter Notebook Documentation, Release 5.0.0.dev

– The mimetype field is always None.

– The content field contains a nbformat.notebooknode.NotebookNode representing the
.ipynb file represented by the model. See the NBFormat documentation for a full description.

• file models

– The format field is either "text" or "base64".

– The mimetype field is text/plain for text-format models and
application/octet-stream for base64-format models.

– The content field is always of type unicode. For text-format file models, content simply
contains the file’s bytes after decoding as UTF-8. Non-text (base64) files are read as bytes, base64
encoded, and then decoded as UTF-8.

• directory models

– The format field is always "json".

– The mimetype field is always None.

– The content field contains a list of content-free models representing the entities in the directory.

Note: In certain circumstances, we don’t need the full content of an entity to complete a Contents API request. In
such cases, we omit the mimetype, content, and format keys from the model. This most commonly occurs
when listing a directory, in which circumstance we represent files within the directory as content-less models to avoid
having to recursively traverse and serialize the entire filesystem.

Sample Models

Notebook Model with Content
{

'content': {
'metadata': {},
'nbformat': 4,
'nbformat_minor': 0,
'cells': [

{
'cell_type': 'markdown',
'metadata': {},
'source': 'Some **Markdown**',

},
],

},
'created': datetime(2015, 7, 25, 19, 50, 19, 19865),
'format': 'json',
'last_modified': datetime(2015, 7, 25, 19, 50, 19, 19865),
'mimetype': None,
'name': 'a.ipynb',
'path': 'foo/a.ipynb',
'type': 'notebook',
'writable': True,

}

Notebook Model without Content
{

'content': None,
'created': datetime.datetime(2015, 7, 25, 20, 17, 33, 271931),
'format': None,

32 Chapter 7. Extending the Notebook

http://nbformat.readthedocs.org/en/latest/index.html

Jupyter Notebook Documentation, Release 5.0.0.dev

'last_modified': datetime.datetime(2015, 7, 25, 20, 17, 33, 271931),
'mimetype': None,
'name': 'a.ipynb',
'path': 'foo/a.ipynb',
'type': 'notebook',
'writable': True

}

API Paths

ContentsManager methods represent the locations of filesystem resources as API-style paths. Such paths are in-
terpreted as relative to the root directory of the notebook server. For compatibility across systems, the following
guarantees are made:

• Paths are always unicode, not bytes.

• Paths are not URL-escaped.

• Paths are always forward-slash (/) delimited, even on Windows.

• Leading and trailing slashes are stripped. For example, /foo/bar/buzz/ becomes foo/bar/buzz.

• The empty string ("") represents the root directory.

7.1.2 Writing a Custom ContentsManager

The default ContentsManager is designed for users running the notebook as an application on a personal computer. It
stores notebooks as .ipynb files on the local filesystem, and it maps files and directories in the Notebook UI to files and
directories on disk. It is possible to override how notebooks are stored by implementing your own custom subclass
of ContentsManager. For example, if you deploy the notebook in a context where you don’t trust or don’t have
access to the filesystem of the notebook server, it’s possible to write your own ContentsManager that stores notebooks
and files in a database.

Required Methods

A minimal complete implementation of a custom ContentsManager must implement the following methods:

ContentsManager.get(path[, content, type, ...]) Get a file or directory model.
ContentsManager.save(model, path) Save a file or directory model to path.
ContentsManager.delete_file(path) Delete the file or directory at path.
ContentsManager.rename_file(old_path, new_path) Rename a file or directory.
ContentsManager.file_exists([path]) Does a file exist at the given path?
ContentsManager.dir_exists(path) Does a directory exist at the given path?
ContentsManager.is_hidden(path) Is path a hidden directory or file?

7.1.3 Customizing Checkpoints

TODO:

7.1. Contents API 33

Jupyter Notebook Documentation, Release 5.0.0.dev

7.1.4 Testing

notebook.services.contents.tests includes several test suites written against the abstract Contents API.
This means that an excellent way to test a new ContentsManager subclass is to subclass our tests to make them use
your ContentsManager.

Note: PGContents is an example of a complete implementation of a custom ContentsManager. It stores note-
books and files in PostgreSQL and encodes directories as SQL relations. PGContents also provides an example of
how to re-use the notebook’s tests.

7.2 File save hooks

You can configure functions that are run whenever a file is saved. There are two hooks available:

• ContentsManager.pre_save_hook runs on the API path and model with content. This can be used for
things like stripping output that people don’t like adding to VCS noise.

• FileContentsManager.post_save_hook runs on the filesystem path and model without content. This
could be used to commit changes after every save, for instance.

They are both called with keyword arguments:

pre_save_hook(model=model, path=path, contents_manager=cm)
post_save_hook(model=model, os_path=os_path, contents_manager=cm)

7.2.1 Examples

These can both be added to jupyter_notebook_config.py.

A pre-save hook for stripping output:

def scrub_output_pre_save(model, **kwargs):
"""scrub output before saving notebooks"""
only run on notebooks
if model['type'] != 'notebook':

return
only run on nbformat v4
if model['content']['nbformat'] != 4:

return

for cell in model['content']['cells']:
if cell['cell_type'] != 'code':

continue
cell['outputs'] = []
cell['execution_count'] = None

c.FileContentsManager.pre_save_hook = scrub_output_pre_save

A post-save hook to make a script equivalent whenever the notebook is saved (replacing the --script option in
older versions of the notebook):

import io
import os
from notebook.utils import to_api_path

34 Chapter 7. Extending the Notebook

https://github.com/quantopian/pgcontents
http://www.postgresql.org/

Jupyter Notebook Documentation, Release 5.0.0.dev

_script_exporter = None

def script_post_save(model, os_path, contents_manager, **kwargs):
"""convert notebooks to Python script after save with nbconvert

replaces `ipython notebook --script`
"""
from nbconvert.exporters.script import ScriptExporter

if model['type'] != 'notebook':
return

global _script_exporter
if _script_exporter is None:

_script_exporter = ScriptExporter(parent=contents_manager)
log = contents_manager.log

base, ext = os.path.splitext(os_path)
py_fname = base + '.py'
script, resources = _script_exporter.from_filename(os_path)
script_fname = base + resources.get('output_extension', '.txt')
log.info("Saving script /%s", to_api_path(script_fname, contents_manager.root_dir))
with io.open(script_fname, 'w', encoding='utf-8') as f:

f.write(script)
c.FileContentsManager.post_save_hook = script_post_save

This could be a simple call to jupyter nbconvert --to script, but spawning the subprocess every time is
quite slow.

7.3 Custom request handlers

The notebook webserver can be interacted with using a well defined RESTful API. You can define custom RESTful
API handlers in addition to the ones provided by the notebook. As described below, to define a custom handler you
need to first write a notebook server extension. Then, in the extension, you can register the custom handler.

7.3.1 Writing a notebook server extension

The notebook webserver is written in Python, hence your server extension should be written in Python too.
Server extensions, like IPython extensions, are Python modules that define a specially named load function,
load_jupyter_server_extension. This function is called when the extension is loaded.

def load_jupyter_server_extension(nb_server_app):
"""
Called when the extension is loaded.

Args:
nb_server_app (NotebookWebApplication): handle to the Notebook webserver instance.

"""
pass

To get the notebook server to load your custom extension, you’ll need to add it to the list of extensions to be loaded.
You can do this using the config system. NotebookApp.server_extensions is a config variable which is an
array of strings, each a Python module to be imported. Because this variable is notebook config, you can set it two
different ways, using config files or via the command line.

7.3. Custom request handlers 35

http://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyter/jupyter-js-services/master/rest_api.yaml

Jupyter Notebook Documentation, Release 5.0.0.dev

For example, to get your extension to load via the command line add a double dash before the variable name, and put
the Python array in double quotes. If your package is “mypackage” and module is “mymodule”, this would look like
jupyter notebook --NotebookApp.server_extensions="[’mypackage.mymodule’]" . Basi-
cally the string should be Python importable.

Alternatively, you can have your extension loaded regardless of the command line args by set-
ting the variable in the Jupyter config file. The default location of the Jupyter config file is
~/.jupyter/profile_default/jupyter_notebook_config.py. Then, inside the config file,
you can use Python to set the variable. For example, the following config does the same as the previous command
line example [1].

c = get_config()
c.NotebookApp.server_extensions = [

'mypackage.mymodule'
]

Before continuing, it’s a good idea to verify that your extension is being loaded. Use a print statement to print
something unique. Launch the notebook server and you should see your statement printed to the console.

7.3.2 Registering custom handlers

Once you’ve defined a server extension, you can register custom handlers because you have a handle to the Notebook
server app instance (nb_server_app above). However, you first need to define your custom handler. To declare
a custom handler, inherit from notebook.base.handlers.IPythonHandler. The example below[1] is a
Hello World handler:

from notebook.base.handlers import IPythonHandler

class HelloWorldHandler(IPythonHandler):
def get(self):

self.finish('Hello, world!')

The Jupyter Notebook server use Tornado as its web framework. For more information on how to implement request
handlers, refer to the Tornado documentation on the matter.

After defining the handler, you need to register the handler with the Notebook server. See the following example:

web_app = nb_server_app.web_app
host_pattern = '.*$'
route_pattern = url_path_join(web_app.settings['base_url'], '/hello')
web_app.add_handlers(host_pattern, [(route_pattern, HelloWorldHandler)])

Putting this together with the extension code, the example looks like the following:

from notebook.utils import url_path_join
from notebook.base.handlers import IPythonHandler

class HelloWorldHandler(IPythonHandler):
def get(self):

self.finish('Hello, world!')

def load_jupyter_server_extension(nb_server_app):
"""
Called when the extension is loaded.

Args:
nb_server_app (NotebookWebApplication): handle to the Notebook webserver instance.

"""

36 Chapter 7. Extending the Notebook

http://www.tornadoweb.org/en/stable/
http://www.tornadoweb.org/en/stable/web.html#request-handlers

Jupyter Notebook Documentation, Release 5.0.0.dev

web_app = nb_server_app.web_app
host_pattern = '.*$'
route_pattern = url_path_join(web_app.settings['base_url'], '/hello')
web_app.add_handlers(host_pattern, [(route_pattern, HelloWorldHandler)])

References: 1. Peter Parente’s Mindtrove

7.3. Custom request handlers 37

http://mindtrove.info/#nb-server-exts

Jupyter Notebook Documentation, Release 5.0.0.dev

38 Chapter 7. Extending the Notebook

CHAPTER 8

Want to contribute?

Here are some resources to help you get started with setting up a development environment, how to contribute, and
technical aspects of contributing.

8.1 Notebook project developer guides

These guides provide information about specific topics related to developing the Notebook.

8.1.1 Installing JavaScript machinery

Note: This section is prepared for contributors to the Notebook source code. Users of the released Notebook do not
need to install the JavaScript tools.

Building the Notebook from its GitHub source code requires some tools to create and minify JavaScript components
and the CSS. These tools and the following steps are used when making a Notebook release.

1. Install Node.js and npm.

• Using the installers on Node.js website: Select a pre-built installer on the Node.js website. The installer
will include Node.js and Node’s package manager, npm.

• Using system’s package manager: Install Node.js and npm using the system’s package manager. For
example, the command for Ubuntu or Debian is:

sudo apt-get install nodejs-legacy npm

2. Install the notebook:

In the notebook repo, do a development install:

pip install -e .

3. Rebuild JavaScript and CSS

There is a build step for the JavaScript and CSS in the notebook. You will need to run this command whenever
there are changes to JavaScript or LESS sources:

python setup.py js css

This command will automatically fetch any missing dependencies (bower, less) and install them in a subdirec-
tory.

39

https://nodejs.org
https://nodejs.org
https://nodejs.org

Jupyter Notebook Documentation, Release 5.0.0.dev

Prototyping tip

When doing prototyping which needs quick iteration of the Notebook’s JavaScript, the bundled
and minified JavaScript may be deactivated. To do this, start the Notebook with the option
--NotebookApp.ignore_minified_js=True. This increases the number of requests that the browser
makes to the server, but it allows testing JavaScript file modification without going through the time consuming
compilation step that may take up to 30 seconds.

8.1.2 Making a notebook release

This document guides a contributor through creating a release of the Jupyter notebook.

Check installed tools

Review Installing JavaScript machinery. Make sure all the tools needed to generate the minified JavaScript and CSS
files are properly installed.

Clean the repository

You can remove all non-tracked files with:

git clean -xfdi

This would ask you for confirmation before removing all untracked files. Make sure the dist/ folder is clean and
avoid stale build from previous attempts.

Create the release

1. Update version number in notebook/_version.py.

2. Run this command:

python setup.py jsversion

It will modify (at least) notebook/static/base/js/namespace.js which makes the notebook ver-
sion available from within JavaScript.

3. Commit and tag the release with the current version number:

git commit -am "release $VERSION"
git tag $VERSION

4. You are now ready to build the sdist and wheel:

python setup.py sdist --formats=zip,gztar
python setup.py bdist_wheel

5. You can now test the wheel and the sdist locally before uploading to PyPI. Make sure to use twine to upload
the archives over SSL.

twine upload dist/*

6. If all went well, change the notebook/_version.py back adding the .dev suffix.

7. Push directly on master, not forgetting to push --tags too.

40 Chapter 8. Want to contribute?

https://github.com/pypa/twine

Jupyter Notebook Documentation, Release 5.0.0.dev

8.1.3 Developer FAQ

1. How do I install a prerelease version such as a beta or release candidate?

python -m pip install notebook --pre --upgrade

2. What are the basic steps for a development install?

git clone https://github.com/jupyter/notebook
cd notebook
python setup.py js css
pip install -e .

8.2 Jupyter developer guides

The Project Jupyter organization has more general documentation about contributing to Jupyter projects. Currently,
this is available in the Jupyter documentation in the Developer Documentation section.

Some of the topics include:

• Submitting a Bug

• Submitting an Enhancement Proposal

• Contributing to the Documentation

• Git and Github Resources

• Contributing to the Code

View the original notebook on nbviewer

8.2. Jupyter developer guides 41

https://jupyter.readthedocs.org/en/latest/#dev-docs
http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Examples%20and%20Tutorials%20Index.ipynb

Jupyter Notebook Documentation, Release 5.0.0.dev

42 Chapter 8. Want to contribute?

CHAPTER 9

Examples and Tutorials

This portion of the documentation was generated from notebook files. You can download the original interactive
notebook files using the links at the tops and bottoms of the pages.

9.1 Tutorials

• What is the Jupyter Notebook

• Notebook Basics

• Running Code

• Working With Markdown Cells

• Custom Keyboard Shortcuts

• JavaScript Notebook Extensions

9.2 Examples

• Importing Notebooks

• Connecting with the Qt Console

• Typesetting Equations

View the original notebook on nbviewer

43

http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Examples%20and%20Tutorials%20Index.ipynb

Jupyter Notebook Documentation, Release 5.0.0.dev

44 Chapter 9. Examples and Tutorials

CHAPTER 10

Jupyter notebook changelog

A summary of changes in the Jupyter notebook. For more detailed information, see GitHub.

10.1 4.1.0

Bug fixes:

• Properly reap zombie subprocesses

• Fix cross-origin problems

• Fix double-escaping of the base URL prefix

• Handle invalid unicode filenames more gracefully

• Fix ANSI color-processing

• Send keepalive messages for web terminals

• Fix bugs in the notebook tour

UI changes:

• Moved the cell toolbar selector into the View menu. Added a button that triggers a “hint” animation to the main
toolbar so users can find the new location. (Click here to see a screencast)

45

https://github.com/jupyter/notebook
https://cloud.githubusercontent.com/assets/335567/10711889/59665a5a-7a3e-11e5-970f-86b89592880c.gif

Jupyter Notebook Documentation, Release 5.0.0.dev

• Added Restart & Run All to the Kernel menu. Users can also bind it to a keyboard shortcut on action
restart-kernel-and-run-all-cells.

• Added multiple-cell selection. Users press Shift-Up/Down or Shift-K/J to extend selection in command
mode. Various actions such as cut/copy/paste, execute, and cell type conversions apply to all selected cells.

• Added a command palette for executing Jupyter actions by name. Users press Cmd/Ctrl-Shift-P or click
the new command palette icon on the toolbar.

• Added a Find and Replace dialog to the Edit menu. Users can also press F in command mode to show the
dialog.

46 Chapter 10. Jupyter notebook changelog

Jupyter Notebook Documentation, Release 5.0.0.dev

Other improvements:

• Custom KernelManager methods can be Tornado coroutines, allowing async operations.

• Make clearing output optional when rewriting input with set_next_input(replace=True).

• Added support for TLS client authentication via --NotebookApp.client-ca.

• Added tags to jupyter/notebook releases on DockerHub. latest continues to track the master branch.

See the 4.1 milestone on GitHub for a complete list of issues and pull requests handled.

10.2 4.0.x

10.2.1 4.0.6

• fix installation of mathjax support files

• fix some double-escape regressions in 4.0.5

• fix a couple of cases where errors could prevent opening a notebook

10.2.2 4.0.5

Security fixes for maliciously crafted files.

• CVE-2015-6938: malicious filenames

10.2. 4.0.x 47

https://github.com/jupyter/notebook/issues?page=3&q=milestone%3A4.1+is%3Aclosed+is%3Aissue&utf8=%E2%9C%93
https://github.com/jupyter/notebook/pulls?q=milestone%3A4.1+is%3Aclosed+is%3Apr
http://www.openwall.com/lists/oss-security/2015/09/02/3

Jupyter Notebook Documentation, Release 5.0.0.dev

• CVE-2015-7337: malicious binary files in text editor.

Thanks to Jonathan Kamens at Quantopian and Juan Broullón for the reports.

10.2.3 4.0.4

• Fix inclusion of mathjax-safe extension

10.2.4 4.0.2

• Fix launching the notebook on Windows

• Fix the path searched for frontend config

10.2.5 4.0.0

First release of the notebook as a standalone package.

48 Chapter 10. Jupyter notebook changelog

http://www.openwall.com/lists/oss-security/2015/09/16/3

	The Jupyter Notebook
	UI Components
	Config file and command line options
	Running a notebook server
	Security in Jupyter notebooks
	Configuring the notebook frontend
	Extending the Notebook
	Want to contribute?
	Examples and Tutorials
	Jupyter notebook changelog

