

 Navigation

 	
 index

 	
 next |

 	Jupyter Notebook 5.0.0.dev documentation

The Jupyter notebook

What’s New in Jupyter Notebook

Release 4.1.0

Release Announcement [https://blog.jupyter.org/2016/01/08/notebook-4-1-release/]

	Cell toolbar selector moved to View menu

	Restart & Run All Cells added to Kernel menu

	Multiple-cell selection and actions including cut, copy, paste and execute

	Command palette added for executing Jupyter actions

	Find and replace added to Edit menu

To upgrade to the release:
pip install notebook --upgrade
or
conda upgrade notebook

User Documentation

	The Jupyter Notebook

	Installation [https://jupyter.readthedocs.org/en/latest/install.html]

	Running the Notebook [https://jupyter.readthedocs.org/en/latest/running.html]

	Migrating from IPython [https://jupyter.readthedocs.org/en/latest/migrating.html]

	UI Components

Configuration

	Config file and command line options
	Options

	Running a notebook server
	Securing a notebook server

	Running a public notebook server

	Running the notebook with a customized URL prefix

	Embedding the notebook in another website

	Known issues

	Security in Jupyter notebooks
	The problem

	Our security model

	The details of trust

	Reporting security issues

	Affected use cases

	Configuring the notebook frontend
	How front end configuration works

	Example - Changing the notebook’s default indentation

	Example - Restoring the notebook’s default indentation

	Persisting configuration settings

	Extending the Notebook
	Contents API

	File save hooks

	Custom request handlers

Developer Documentation

	Want to contribute?

	Installing JavaScript machinery

	Making a notebook release

	Developer FAQ

Community documentation

	Examples and Tutorials

About Jupyter Notebook

	Jupyter notebook changelog
	4.1.0

	4.0.x

Questions? Suggestions?

	Jupyter mailing list [https://groups.google.com/forum/#!forum/jupyter]

	Jupyter website [https://jupyter.org]

	Stack Overflow - Jupyter [https://stackoverflow.com/questions/tagged/jupyter]

	Stack Overflow - Jupyter-notebook [https://stackoverflow.com/questions/tagged/jupyter-notebook]

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

The Jupyter Notebook

Introduction

The notebook extends the console-based approach to interactive computing in
a qualitatively new direction, providing a web-based application suitable for
capturing the whole computation process: developing, documenting, and
executing code, as well as communicating the results. The Jupyter notebook
combines two components:

A web application: a browser-based tool for interactive authoring of
documents which combine explanatory text, mathematics, computations and their
rich media output.

Notebook documents: a representation of all content visible in the web
application, including inputs and outputs of the computations, explanatory
text, mathematics, images, and rich media representations of objects.

See also

See the installation guide [http://jupyter.readthedocs.org/en/latest/install.html#install] on how to install the notebook and its dependencies.

Main features of the web application

	In-browser editing for code, with automatic syntax highlighting,
indentation, and tab completion/introspection.

	The ability to execute code from the browser, with the results of
computations attached to the code which generated them.

	Displaying the result of computation using rich media representations, such
as HTML, LaTeX, PNG, SVG, etc. For example, publication-quality figures
rendered by the matplotlib [http://matplotlib.org] library, can be included inline.

	In-browser editing for rich text using the Markdown [http://daringfireball.net/projects/markdown/syntax] markup language, which
can provide commentary for the code, is not limited to plain text.

	The ability to easily include mathematical notation within markdown cells
using LaTeX, and rendered natively by MathJax [http://www.mathjax.org/].

Notebook documents

Notebook documents contains the inputs and outputs of a interactive session as
well as additional text that accompanies the code but is not meant for
execution. In this way, notebook files can serve as a complete computational
record of a session, interleaving executable code with explanatory text,
mathematics, and rich representations of resulting objects. These documents
are internally JSON [http://en.wikipedia.org/wiki/JSON] files and are saved with the .ipynb extension. Since
JSON is a plain text format, they can be version-controlled and shared with
colleagues.

Notebooks may be exported to a range of static formats, including HTML (for
example, for blog posts), reStructuredText, LaTeX, PDF, and slide shows, via
the nbconvert [http://nbconvert.readthedocs.org/en/latest/] command.

Furthermore, any .ipynb notebook document available from a public
URL can be shared via the Jupyter Notebook Viewer (nbviewer [http://nbviewer.jupyter.org]).
This service loads the notebook document from the URL and renders it as a
static web page. The results may thus be shared with a colleague, or as a
public blog post, without other users needing to install the Jupyter notebook
themselves. In effect, nbviewer [http://nbviewer.jupyter.org] is simply nbconvert [http://nbconvert.readthedocs.org/en/latest/] as
a web service, so you can do your own static conversions with nbconvert,
without relying on nbviewer.

See also

Details on the notebook JSON file format [http://nbformat.readthedocs.org/en/latest/format_description.html#notebook-file-format]

Starting the notebook server

You can start running a notebook server from the command line using the
following command:

jupyter notebook

This will print some information about the notebook server in your console,
and open a web browser to the URL of the web application (by default,
http://127.0.0.1:8888).

The landing page of the Jupyter notebook web application, the dashboard,
shows the notebooks currently available in the notebook directory (by default,
the directory from which the notebook server was started).

You can create new notebooks from the dashboard with the New Notebook
button, or open existing ones by clicking on their name. You can also drag
and drop .ipynb notebooks and standard .py Python source code files
into the notebook list area.

When starting a notebook server from the command line, you can also open a
particular notebook directly, bypassing the dashboard, with jupyter notebook
my_notebook.ipynb. The .ipynb extension is assumed if no extension is
given.

When you are inside an open notebook, the File | Open... menu option will
open the dashboard in a new browser tab, to allow you to open another notebook
from the notebook directory or to create a new notebook.

Note

You can start more than one notebook server at the same time, if you want
to work on notebooks in different directories. By default the first
notebook server starts on port 8888, and later notebook servers search for
ports near that one. You can also manually specify the port with the
--port option.

Creating a new notebook document

A new notebook may be created at any time, either from the dashboard, or using
the File ‣ New menu option from within an active notebook.
The new notebook is created within the same directory and will open in a new
browser tab. It will also be reflected as a new entry in the notebook list on
the dashboard.

[image: _images/new-notebook.gif]

Opening notebooks

An open notebook has exactly one interactive session connected to an
IPython kernel [http://ipython.org/ipython-doc/dev/overview.html#ipythonzmq], which will execute code sent by the user
and communicate back results. This kernel remains active if the web browser
window is closed, and reopening the same notebook from the dashboard will
reconnect the web application to the same kernel. In the dashboard, notebooks
with an active kernel have a Shutdown button next to them, whereas
notebooks without an active kernel have a Delete button in its place.

Other clients may connect to the same underlying IPython kernel.
The notebook server always prints to the terminal the full details of
how to connect to each kernel, with messages such as the following:

[NotebookApp] Kernel started: 87f7d2c0-13e3-43df-8bb8-1bd37aaf3373

This long string is the kernel’s ID which is sufficient for getting the
information necessary to connect to the kernel. You can also request this
connection data by running the %connect_info magic [http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magics-explained]. This will print the same ID information as well as the
content of the JSON data structure it contains.

You can then, for example, manually start a Qt console connected to the same
kernel from the command line, by passing a portion of the ID:

$ ipython qtconsole --existing 87f7d2c0

Without an ID, --existing will connect to the most recently
started kernel. This can also be done by running the %qtconsole
magic [http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magics-explained] in the notebook.

See also

Decoupled two-process model [http://ipython.org/ipython-doc/dev/overview.html#ipythonzmq]

Notebook user interface

When you create a new notebook document, you will be presented with the
notebook name, a menu bar, a toolbar and an empty code
cell.

notebook name: The name of the notebook document is displayed at the top
of the page, next to the IP[y]: Notebook logo. This name reflects the name
of the .ipynb notebook document file. Clicking on the notebook name
brings up a dialog which allows you to rename it. Thus, renaming a notebook
from “Untitled0” to “My first notebook” in the browser, renames the
Untitled0.ipynb file to My first notebook.ipynb.

menu bar: The menu bar presents different options that may be used to
manipulate the way the notebook functions.

toolbar: The tool bar gives a quick way of performing the most-used
operations within the notebook, by clicking on an icon.

code cell: the default type of cell, read on for an explanation of cells

Note

As of notebook version 4.1, the user interface allows for multiple cells to
be selected. The quick celltype selector, found in the menubar, will
display a dash - when multiple cells are selected to indicate that the
type of the cells in the selection might not be unique. The quick selector
can still be used to change the type of the selection and will change the
type of all the currently selected cells.

Structure of a notebook document

The notebook consists of a sequence of cells. A cell is a multiline
text input field, and its contents can be executed by using
Shift-Enter, or by clicking either the “Play” button the toolbar, or
Cell | Run in the menu bar. The execution behavior of a cell is determined
the cell’s type. There are four types of cells: code cells, markdown
cells, raw cells and heading cells. Every cell starts off
being a code cell, but its type can be changed by using a drop-down on the
toolbar (which will be “Code”, initially), or via keyboard shortcuts.

For more information on the different things you can do in a notebook,
see the collection of examples [http://nbviewer.jupyter.org/github/jupyter/notebook/tree/master/docs/source/examples/Notebook/].

Code cells

A code cell allows you to edit and write new code, with full syntax
highlighting and tab completion. By default, the language associated to a code
cell is Python, but other languages, such as Julia and R, can be
handled using cell magic commands [http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magics-explained].

When a code cell is executed, code that it contains is sent to the kernel
associated with the notebook. The results that are returned from this
computation are then displayed in the notebook as the cell’s output. The
output is not limited to text, with many other possible forms of output are
also possible, including matplotlib figures and HTML tables (as used, for
example, in the pandas data analysis package). This is known as IPython’s
rich display capability.

See also

Rich Output [https://nbviewer.jupyter.org/urls/raw.github.com/ipython/ipython/3.x/examples/IPython%20Kernel/Rich%20Output.ipynb] example notebook

Markdown cells

You can document the computational process in a literate way, alternating
descriptive text with code, using rich text. In IPython this is accomplished
by marking up text with the Markdown language. The corresponding cells are
called Markdown cells. The Markdown language provides a simple way to
perform this text markup, that is, to specify which parts of the text should
be emphasized (italics), bold, form lists, etc.

When a Markdown cell is executed, the Markdown code is converted into
the corresponding formatted rich text. Markdown allows arbitrary HTML code for
formatting.

Within Markdown cells, you can also include mathematics in a straightforward
way, using standard LaTeX notation: $...$ for inline mathematics and
$$...$$ for displayed mathematics. When the Markdown cell is executed,
the LaTeX portions are automatically rendered in the HTML output as equations
with high quality typography. This is made possible by MathJax [http://www.mathjax.org/], which
supports a large subset of LaTeX functionality

Standard mathematics environments defined by LaTeX and AMS-LaTeX (the
amsmath package) also work, such as
\begin{equation}...\end{equation}, and \begin{align}...\end{align}.
New LaTeX macros may be defined using standard methods,
such as \newcommand, by placing them anywhere between math delimiters in
a Markdown cell. These definitions are then available throughout the rest of
the IPython session.

See also

Markdown Cells example notebook

Raw cells

Raw cells provide a place in which you can write output directly.
Raw cells are not evaluated by the notebook.
When passed through nbconvert [http://nbconvert.readthedocs.org/en/latest/], raw cells arrive in the
destination format unmodified. For example, this allows you to type full LaTeX
into a raw cell, which will only be rendered by LaTeX after conversion by
nbconvert.

Heading cells

If you want to provide structure for your document, you can use markdown
headings. Markdown headings consist of 1 to 6 hash # signs # followed by a
space and the title of your section. The markdown heading will be converted
to a clickable link for a section of the notebook. It is also used as a hint
when exporting to other document formats, like PDF.
We recommend using only one markdown header in a cell and limit the cell’s
content to the header text. For flexibility of text format conversion, we
suggest placing additional text in the next notebook cell.

Basic workflow

The normal workflow in a notebook is, then, quite similar to a standard
IPython session, with the difference that you can edit cells in-place multiple
times until you obtain the desired results, rather than having to
rerun separate scripts with the %run magic command.

Typically, you will work on a computational problem in pieces, organizing
related ideas into cells and moving forward once previous parts work
correctly. This is much more convenient for interactive exploration than
breaking up a computation into scripts that must be executed together, as was
previously necessary, especially if parts of them take a long time to run.

At certain moments, it may be necessary to interrupt a calculation which is
taking too long to complete. This may be done with the Kernel | Interrupt
menu option, or the Ctrl-m i keyboard shortcut.
Similarly, it may be necessary or desirable to restart the whole computational
process, with the Kernel | Restart menu option or Ctrl-m .
shortcut.

A notebook may be downloaded in either a .ipynb or .py file from the
menu option File | Download as. Choosing the .py option downloads a
Python .py script, in which all rich output has been removed and the
content of markdown cells have been inserted as comments.

See also

Running Code in the Jupyter Notebook [https://nbviewer.jupyter.org/urls/raw.github.com/ipython/ipython/3.x/examples/Notebook/Running%20Code.ipynb] example notebook

Notebook Basics [https://nbviewer.jupyter.org/urls/raw.github.com/ipython/ipython/3.x/examples/Notebook/Notebook%20Basics.ipynb] example notebook

a warning about doing “roundtrip” conversions [http://ipython.org/ipython-doc/dev/notebook/notebook.html#note-about-roundtrip].

Keyboard shortcuts

All actions in the notebook can be performed with the mouse, but keyboard
shortcuts are also available for the most common ones. The essential shortcuts
to remember are the following:

	
	Shift-Enter: run cell

	Execute the current cell, show output (if any), and jump to the next cell
below. If Shift-Enter is invoked on the last cell, a new code
cell will also be created. Note that in the notebook, typing Enter
on its own never forces execution, but rather just inserts a new line in
the current cell. Shift-Enter is equivalent to clicking the
Cell | Run menu item.

	
	Ctrl-Enter: run cell in-place

	Execute the current cell as if it were in “terminal mode”, where any
output is shown, but the cursor remains in the current cell. The cell’s
entire contents are selected after execution, so you can just start typing
and only the new input will be in the cell. This is convenient for doing
quick experiments in place, or for querying things like filesystem
content, without needing to create additional cells that you may not want
to be saved in the notebook.

	
	Alt-Enter: run cell, insert below

	Executes the current cell, shows the output, and inserts a new
cell between the current cell and the cell below (if one exists). This
is thus a shortcut for the sequence Shift-Enter, Ctrl-m a.
(Ctrl-m a adds a new cell above the current one.)

	
	Esc and Enter: Command mode and edit mode

	In command mode, you can easily navigate around the notebook using keyboard
shortcuts. In edit mode, you can edit text in cells.

For the full list of available shortcuts, click Help,
Keyboard Shortcuts in the notebook menus.

Plotting

One major feature of the Jupyter notebook is the ability to display plots that
are the output of running code cells. The IPython kernel is designed to work
seamlessly with the matplotlib [http://matplotlib.org] plotting library to provide this functionality.
Specific plotting library integration is a feature of the kernel.

Installing kernels

For information on how to install a Python kernel, refer to the IPython install
page [http://ipython.org/install.html].

Kernels for other languages can be found in the IPython wiki [https://github.com/ipython/ipython/wiki/IPython%20kernels%20for%20other%20languages].
They usually come with instruction what to run to make the kernel available in the notebook.

Signing Notebooks

To prevent untrusted code from executing on users’ behalf when notebooks open,
we have added a signature to the notebook, stored in metadata.
The notebook server verifies this signature when a notebook is opened.
If the signature stored in the notebook metadata does not match,
javascript and HTML output will not be displayed on load,
and must be regenerated by re-executing the cells.

Any notebook that you have executed yourself in its entirety will be considered trusted,
and its HTML and javascript output will be displayed on load.

If you need to see HTML or Javascript output without re-executing,
you can explicitly trust notebooks, such as those shared with you,
or those that you have written yourself prior to IPython 2.0,
at the command-line with:

$ jupyter trust mynotebook.ipynb [other notebooks.ipynb]

This just generates a new signature stored in each notebook.

You can generate a new notebook signing key with:

$ jupyter trust --reset

Browser Compatibility

The Jupyter Notebook is officially supported the latest stable version the following browsers:

	Chrome

	Safari

	Firefox

The is mainly due to the notebook’s usage of WebSockets and the flexible box model.

The following browsers are unsupported:

	Safari < 5

	Firefox < 6

	Chrome < 13

	Opera (any): CSS issues, but execution might work

	Internet Explorer < 10

	Internet Explorer ≥ 10 (same as Opera)

Using Safari with HTTPS and an untrusted certificate is known to not work
(websockets will fail).

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

UI Components

When opening bug reports or sending emails to the Jupyter mailing list, it is
useful to know the names of different UI components so that other developers
and users have an easier time helping you diagnose your problems. This section
will familiarize you with the names of UI elements within the Notebook and the
different Notebook modes.

Notebook Dashboard

When you launch jupyter notebook the first page that you encounter is the
Notebook Dashboard.

[image: _images/jupyter-notebook-dashboard.png]

Notebook Editor

Once you’ve selected a Notebook to edit, the Notebook will open in the Notebook
Editor.

[image: _images/jupyter-notebook-default.png]

Interactive User Interface Tour of the Notebook

If you would like to learn more about the specific elements within the Notebook
Editor, you can go through the User Interface Tour by selecting Help in the
menubar then selecting User Interface Tour.

Edit Mode and Notebook Editor

When a cell is in edit mode, the Cell Mode Indicator will change to reflect
the cell’s state. This state is indicated by a small pencil icon on the
top right of the interface. When the cell is in command mode, there is no
icon in that location.

[image: _images/jupyter-notebook-edit.png]

File Editor

Now let’s say that you’ve chosen to open a Markdown file instead of a Notebook
file whilst in the Notebook Dashboard. If so, the file will be opened in the
File Editor.

[image: _images/jupyter-file-editor.png]

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

Config file and command line options

The notebook server can be run with a variety of command line arguments.
A list of available options can be found below in the options section.

Defaults for these options can also be set by creating a file named
jupyter_notebook_config.py in your Jupyter folder. The Jupyter
folder is in your home directory, ~/.jupyter.

To create a jupyter_notebook_config.py file, with all the defaults
commented out, you can use the following command line:

$ jupyter notebook --generate-config

Options

This list of options can be generated by running the following and hitting
enter:

$ jupyter notebook --help

	Application.log_datefmt : Unicode

	Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s

	Application.log_format : Unicode

	Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template

	Application.log_level : 0|10|20|30|40|50|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’

	Default: 30

Set the log level by value or name.

	JupyterApp.answer_yes : Bool

	Default: False

Answer yes to any prompts.

	JupyterApp.config_file : Unicode

	Default: u''

Full path of a config file.

	JupyterApp.config_file_name : Unicode

	Default: u''

Specify a config file to load.

	JupyterApp.generate_config : Bool

	Default: False

Generate default config file.

	NotebookApp.allow_credentials : Bool

	Default: False

Set the Access-Control-Allow-Credentials: true header

	NotebookApp.allow_origin : Unicode

	Default: ''

Set the Access-Control-Allow-Origin header

Use ‘*’ to allow any origin to access your server.

Takes precedence over allow_origin_pat.

	NotebookApp.allow_origin_pat : Unicode

	Default: ''

Use a regular expression for the Access-Control-Allow-Origin header

Requests from an origin matching the expression will get replies with:

Access-Control-Allow-Origin: origin

where origin is the origin of the request.

Ignored if allow_origin is set.

	NotebookApp.allow_root : Bool

	Default: False

Whether to allow the user to run the notebook as root.

	NotebookApp.base_project_url : Unicode

	Default: '/'

DEPRECATED use base_url

	NotebookApp.base_url : Unicode

	Default: '/'

The base URL for the notebook server.

Leading and trailing slashes can be omitted,
and will automatically be added.

	NotebookApp.browser : Unicode

	Default: u''

Specify what command to use to invoke a web
browser when opening the notebook. If not specified, the
default browser will be determined by the webbrowser
standard library module, which allows setting of the
BROWSER environment variable to override it.

	NotebookApp.certfile : Unicode

	Default: u''

The full path to an SSL/TLS certificate file.

	NotebookApp.client_ca : Unicode

	Default: u''

The full path to a certificate authority certifificate for SSL/TLS client authentication.

	NotebookApp.config_manager_class : Type

	Default: 'notebook.services.config.manager.ConfigManager'

The config manager class to use

	NotebookApp.contents_manager_class : Type

	Default: 'notebook.services.contents.filemanager.FileContentsManager'

The notebook manager class to use.

	NotebookApp.cookie_secret : Bytes

	Default: ''

The random bytes used to secure cookies.
By default this is a new random number every time you start the Notebook.
Set it to a value in a config file to enable logins to persist across server sessions.

Note: Cookie secrets should be kept private, do not share config files with
cookie_secret stored in plaintext (you can read the value from a file).

	NotebookApp.cookie_secret_file : Unicode

	Default: u''

The file where the cookie secret is stored.

	NotebookApp.default_url : Unicode

	Default: '/tree'

The default URL to redirect to from /

	NotebookApp.enable_mathjax : Bool

	Default: True

Whether to enable MathJax for typesetting math/TeX

MathJax is the javascript library Jupyter uses to render math/LaTeX. It is
very large, so you may want to disable it if you have a slow internet
connection, or for offline use of the notebook.

When disabled, equations etc. will appear as their untransformed TeX source.

	NotebookApp.extra_nbextensions_path : List

	Default: []

extra paths to look for Javascript notebook extensions

	NotebookApp.extra_static_paths : List

	Default: []

Extra paths to search for serving static files.

This allows adding javascript/css to be available from the notebook server machine,
or overriding individual files in the IPython

	NotebookApp.extra_template_paths : List

	Default: []

Extra paths to search for serving jinja templates.

Can be used to override templates from notebook.templates.

	NotebookApp.file_to_run : Unicode

	Default: ''

No description

	NotebookApp.ignore_minified_js : Bool

	Default: False

Deprecated: Use minified JS file or not, mainly use during dev to avoid JS recompilation

	NotebookApp.iopub_data_rate_limit : Float

	Default: 0

(bytes/sec)
Maximum rate at which messages can be sent on iopub before they are
limited.

	NotebookApp.iopub_msg_rate_limit : Float

	Default: 0

(msg/sec)
Maximum rate at which messages can be sent on iopub before they are
limited.

	NotebookApp.ip : Unicode

	Default: 'localhost'

The IP address the notebook server will listen on.

	NotebookApp.jinja_environment_options : Dict

	Default: {}

Supply extra arguments that will be passed to Jinja environment.

	NotebookApp.jinja_template_vars : Dict

	Default: {}

Extra variables to supply to jinja templates when rendering.

	NotebookApp.kernel_manager_class : Type

	Default: 'notebook.services.kernels.kernelmanager.MappingKernelManager'

The kernel manager class to use.

	NotebookApp.kernel_spec_manager_class : Type

	Default: 'jupyter_client.kernelspec.KernelSpecManager'

The kernel spec manager class to use. Should be a subclass
of jupyter_client.kernelspec.KernelSpecManager.

The Api of KernelSpecManager is provisional and might change
without warning between this version of Jupyter and the next stable one.

	NotebookApp.keyfile : Unicode

	Default: u''

The full path to a private key file for usage with SSL/TLS.

	NotebookApp.login_handler_class : Type

	Default: 'notebook.auth.login.LoginHandler'

The login handler class to use.

	NotebookApp.logout_handler_class : Type

	Default: 'notebook.auth.logout.LogoutHandler'

The logout handler class to use.

	NotebookApp.mathjax_url : Unicode

	Default: ''

The url for MathJax.js.

	NotebookApp.notebook_dir : Unicode

	Default: u''

The directory to use for notebooks and kernels.

	NotebookApp.open_browser : Bool

	Default: True

Whether to open in a browser after starting.
The specific browser used is platform dependent and
determined by the python standard library webbrowser
module, unless it is overridden using the –browser
(NotebookApp.browser) configuration option.

	NotebookApp.password : Unicode

	Default: u''

Hashed password to use for web authentication.

To generate, type in a python/IPython shell:

from notebook.auth import passwd; passwd()

The string should be of the form type:salt:hashed-password.

	NotebookApp.password_required : Bool

	Default: False

Forces users to use a password for the Notebook server.
This is useful in a multi user environment, for instance when
everybody in the LAN can access each other’s machine though ssh.

In such a case, server the notebook server on localhost is not secure
since any user can connect to the notebook server via ssh.

	NotebookApp.port : Integer

	Default: 8888

The port the notebook server will listen on.

	NotebookApp.port_retries : Integer

	Default: 50

The number of additional ports to try if the specified port is not available.

	NotebookApp.pylab : Unicode

	Default: 'disabled'

DISABLED: use %pylab or %matplotlib in the notebook to enable matplotlib.

	NotebookApp.rate_limit_window : Float

	Default: 1.0

(sec) Time window used to
check the message and data rate limits.

	NotebookApp.reraise_server_extension_failures : Bool

	Default: False

Reraise exceptions encountered loading server extensions?

	NotebookApp.server_extensions : List

	Default: []

Python modules to load as notebook server extensions. This is an experimental API, and may change in future releases.

	NotebookApp.session_manager_class : Type

	Default: 'notebook.services.sessions.sessionmanager.SessionManager'

The session manager class to use.

	NotebookApp.ssl_options : Dict

	Default: {}

Supply SSL options for the tornado HTTPServer.
See the tornado docs for details.

	NotebookApp.tornado_settings : Dict

	Default: {}

Supply overrides for the tornado.web.Application that the Jupyter notebook uses.

	NotebookApp.trust_xheaders : Bool

	Default: False

Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded-For headerssent by the upstream reverse proxy. Necessary if the proxy handles SSL

	NotebookApp.webapp_settings : Dict

	Default: {}

DEPRECATED, use tornado_settings

	NotebookApp.websocket_url : Unicode

	Default: ''

The base URL for websockets,
if it differs from the HTTP server (hint: it almost certainly doesn’t).

Should be in the form of an HTTP origin: ws[s]://hostname[:port]

	ConnectionFileMixin.connection_file : Unicode

	Default: ''

JSON file in which to store connection info [default: kernel-<pid>.json]

This file will contain the IP, ports, and authentication key needed to connect
clients to this kernel. By default, this file will be created in the security dir
of the current profile, but can be specified by absolute path.

	ConnectionFileMixin.control_port : Integer

	Default: 0

set the control (ROUTER) port [default: random]

	ConnectionFileMixin.hb_port : Integer

	Default: 0

set the heartbeat port [default: random]

	ConnectionFileMixin.iopub_port : Integer

	Default: 0

set the iopub (PUB) port [default: random]

	ConnectionFileMixin.ip : Unicode

	Default: u''

Set the kernel’s IP address [default localhost].
If the IP address is something other than localhost, then
Consoles on other machines will be able to connect
to the Kernel, so be careful!

	ConnectionFileMixin.shell_port : Integer

	Default: 0

set the shell (ROUTER) port [default: random]

	ConnectionFileMixin.stdin_port : Integer

	Default: 0

set the stdin (ROUTER) port [default: random]

	ConnectionFileMixin.transport : u’tcp’|u’ipc’

	Default: 'tcp'

No description

	KernelManager.autorestart : Bool

	Default: True

Should we autorestart the kernel if it dies.

	KernelManager.kernel_cmd : List

	Default: []

DEPRECATED: Use kernel_name instead.

The Popen Command to launch the kernel.
Override this if you have a custom kernel.
If kernel_cmd is specified in a configuration file,
Jupyter does not pass any arguments to the kernel,
because it cannot make any assumptions about the
arguments that the kernel understands. In particular,
this means that the kernel does not receive the
option –debug if it given on the Jupyter command line.

	Session.buffer_threshold : Integer

	Default: 1024

Threshold (in bytes) beyond which an object’s buffer should be extracted to avoid pickling.

	Session.check_pid : Bool

	Default: True

Whether to check PID to protect against calls after fork.

This check can be disabled if fork-safety is handled elsewhere.

	Session.copy_threshold : Integer

	Default: 65536

Threshold (in bytes) beyond which a buffer should be sent without copying.

	Session.debug : Bool

	Default: False

Debug output in the Session

	Session.digest_history_size : Integer

	Default: 65536

The maximum number of digests to remember.

The digest history will be culled when it exceeds this value.

	Session.item_threshold : Integer

	Default: 64

The maximum number of items for a container to be introspected for custom serialization.
Containers larger than this are pickled outright.

	Session.key : CBytes

	Default: ''

execution key, for signing messages.

	Session.keyfile : Unicode

	Default: ''

path to file containing execution key.

	Session.metadata : Dict

	Default: {}

Metadata dictionary, which serves as the default top-level metadata dict for each message.

	Session.packer : DottedObjectName

	Default: 'json'

The name of the packer for serializing messages.
Should be one of ‘json’, ‘pickle’, or an import name
for a custom callable serializer.

	Session.session : CUnicode

	Default: u''

The UUID identifying this session.

	Session.signature_scheme : Unicode

	Default: 'hmac-sha256'

The digest scheme used to construct the message signatures.
Must have the form ‘hmac-HASH’.

	Session.unpacker : DottedObjectName

	Default: 'json'

The name of the unpacker for unserializing messages.
Only used with custom functions for packer.

	Session.username : Unicode

	Default: u'username'

Username for the Session. Default is your system username.

	MultiKernelManager.default_kernel_name : Unicode

	Default: 'python2'

The name of the default kernel to start

	MultiKernelManager.kernel_manager_class : DottedObjectName

	Default: 'jupyter_client.ioloop.IOLoopKernelManager'

The kernel manager class. This is configurable to allow
subclassing of the KernelManager for customized behavior.

	MappingKernelManager.root_dir : Unicode

	Default: u''

No description

	ContentsManager.checkpoints : Instance

	Default: None

No description

	ContentsManager.checkpoints_class : Type

	Default: 'notebook.services.contents.checkpoints.Checkpoints'

No description

	ContentsManager.checkpoints_kwargs : Dict

	Default: {}

No description

	ContentsManager.hide_globs : List

	Default: [u'__pycache__', '*.pyc', '*.pyo', '.DS_Store', '*.so', '*.dy...

Glob patterns to hide in file and directory listings.

	ContentsManager.pre_save_hook : Any

	Default: None

Python callable or importstring thereof

To be called on a contents model prior to save.

This can be used to process the structure,
such as removing notebook outputs or other side effects that
should not be saved.

It will be called as (all arguments passed by keyword):

hook(path=path, model=model, contents_manager=self)

	model: the model to be saved. Includes file contents.
Modifying this dict will affect the file that is stored.

	path: the API path of the save destination

	contents_manager: this ContentsManager instance

	ContentsManager.untitled_directory : Unicode

	Default: 'Untitled Folder'

The base name used when creating untitled directories.

	ContentsManager.untitled_file : Unicode

	Default: 'untitled'

The base name used when creating untitled files.

	ContentsManager.untitled_notebook : Unicode

	Default: 'Untitled'

The base name used when creating untitled notebooks.

	FileManagerMixin.use_atomic_writing : Bool

	Default: True

By default notebooks are saved on disk on a temporary file and then if succefully written, it replaces the old ones.
This procedure, namely ‘atomic_writing’, causes some bugs on file system whitout operation order enforcement (like some networked fs).
If set to False, the new notebook is written directly on the old one which could fail (eg: full filesystem or quota)

	FileContentsManager.post_save_hook : Any

	Default: None

Python callable or importstring thereof

to be called on the path of a file just saved.

This can be used to process the file on disk,
such as converting the notebook to a script or HTML via nbconvert.

It will be called as (all arguments passed by keyword):

hook(os_path=os_path, model=model, contents_manager=instance)

	path: the filesystem path to the file just written

	model: the model representing the file

	contents_manager: this ContentsManager instance

	FileContentsManager.root_dir : Unicode

	Default: u''

No description

	FileContentsManager.save_script : Bool

	Default: False

DEPRECATED, use post_save_hook. Will be removed in Notebook 5.0

	NotebookNotary.algorithm : ‘sha1’|’sha224’|’sha384’|’sha256’|’sha512’|’md5’

	Default: 'sha256'

The hashing algorithm used to sign notebooks.

	NotebookNotary.cache_size : Integer

	Default: 65535

The number of notebook signatures to cache.
When the number of signatures exceeds this value,
the oldest 25% of signatures will be culled.

	NotebookNotary.db_file : Unicode

	Default: u''

The sqlite file in which to store notebook signatures.
By default, this will be in your Jupyter runtime directory.
You can set it to ‘:memory:’ to disable sqlite writing to the filesystem.

	NotebookNotary.secret : Bytes

	Default: ''

The secret key with which notebooks are signed.

	NotebookNotary.secret_file : Unicode

	Default: u''

The file where the secret key is stored.

	KernelSpecManager.ensure_native_kernel : Bool

	Default: True

If there is no Python kernelspec registered and the IPython
kernel is available, ensure it is added to the spec list.

	KernelSpecManager.kernel_spec_class : Type

	Default: 'jupyter_client.kernelspec.KernelSpec'

The kernel spec class. This is configurable to allow
subclassing of the KernelSpecManager for customized behavior.

	KernelSpecManager.whitelist : Set

	Default: set([])

Whitelist of allowed kernel names.

By default, all installed kernels are allowed.

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

Running a notebook server

The Jupyter notebook web application is based on a
server-client structure. The notebook server uses a two-process kernel
architecture [http://ipython.org/ipython-doc/dev/overview.html#ipythonzmq] based on ZeroMQ [http://zeromq.org], as well as Tornado [http://www.tornadoweb.org] for
serving HTTP requests.

Note

By default, a notebook server runs locally at 127.0.0.1:8888
and is accessible only from localhost. You may access the
notebook server from the browser using http://127.0.0.1:8888.

This document describes how you can
secure a notebook server and how to
run it on a public interface.

Securing a notebook server

You can protect your notebook server with a simple single password by
configuring the NotebookApp.password setting in
jupyter_notebook_config.py.

Prerequisite: A notebook configuration file

Check to see if you have a notebook configuration file,
jupyter_notebook_config.py. The default location for this file
is your Jupyter folder in your home directory, ~/.jupyter.

If you don’t already have one, create a config file for the notebook
using the following command:

$ jupyter notebook --generate-config

Preparing a hashed password

You can prepare a hashed password using the function
notebook.auth.security.passwd():

In [1]: from notebook.auth import passwd
In [2]: passwd()
Enter password:
Verify password:
Out[2]: 'sha1:67c9e60bb8b6:9ffede0825894254b2e042ea597d771089e11aed'

Caution

passwd() when called with no arguments
will prompt you to enter and verify your password such as
in the above code snippet. Although the function can also
be passed a string as an argument such as passwd('mypassword'), please
do not pass a string as an argument inside an IPython session, as it
will be saved in your input history.

Adding hashed password to your notebook configuration file

You can then add the hashed password to your jupyter_notebook_config.py.
The default location for this file jupyter_notebook_config.py is in
your Jupyter folder in your home directory, ~/.jupyter, e.g.:

c.NotebookApp.password = u'sha1:67c9e60bb8b6:9ffede0825894254b2e042ea597d771089e11aed'

Using SSL for encrypted communication

When using a password, it is a good idea to also use SSL with a web certificate,
so that your hashed password is not sent unencrypted by your browser.

Important

Web security is rapidly changing and evolving. We provide this document
as a convenience to the user, and recommend that the user keep current on
changes that may impact security, such as new releases of OpenSSL.
The Open Web Application Security Project (OWASP [https://www.owasp.org]) website is a good resource
on general security issues and web practices.

You can start the notebook to communicate via a secure protocol mode by setting
the certfile option to your self-signed certificate, i.e. mycert.pem,
with the command:

$ jupyter notebook --certfile=mycert.pem --keyfile mykey.key

Tip

A self-signed certificate can be generated with openssl. For example,
the following command will create a certificate valid for 365 days with
both the key and certificate data written to the same file:

$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout mykey.key -out mycert.pem

When starting the notebook server, your browser may warn that your self-signed
certificate is insecure or unrecognized. If you wish to have a fully
compliant self-signed certificate that will not raise warnings, it is possible
(but rather involved) to create one, as explained in detail in this tutorial [http://arstechnica.com/security/news/2009/12/how-to-get-set-with-a-secure-sertificate-for-free.ars].

Running a public notebook server

If you want to access your notebook server remotely via a web browser,
you can do so by running a public notebook server. For optimal security
when running a public notebook server, you should first secure the
server with a password and SSL/HTTPS as described in
Securing a notebook server.

Start by creating a certificate file and a hashed password, as explained in
Securing a notebook server.

If you don’t already have one, create a
config file for the notebook using the following command line:

$ jupyter notebook --generate-config

In the ~/.jupyter directory, edit the notebook config file,
jupyter_notebook_config.py. By default, the notebook config file has
all fields commented out. The minimum set of configuration options that
you should to uncomment and edit in :file:jupyter_notebook_config.py is the
following:

Set options for certfile, ip, password, and toggle off browser auto-opening
c.NotebookApp.certfile = u'/absolute/path/to/your/certificate/mycert.pem'
c.NotebookApp.keyfile = u'/absolute/path/to/your/certificate/mykey.key'
Set ip to '*' to bind on all interfaces (ips) for the public server
c.NotebookApp.ip = '*'
c.NotebookApp.password = u'sha1:bcd259ccf...<your hashed password here>'
c.NotebookApp.open_browser = False

It is a good idea to set a known, fixed port for server access
c.NotebookApp.port = 9999

You can then start the notebook using the jupyter notebook command.

Important

Use ‘https’.
Keep in mind that when you enable SSL support, you must access the
notebook server over https://, not over plain http://. The startup
message from the server prints a reminder in the console, but it is easy
to overlook this detail and think the server is for some reason
non-responsive.

When using SSL, always access the notebook server with ‘https://’.

You may now access the public server by pointing your browser to
https://your.host.com:9999 where your.host.com is your public server’s
domain.

Firewall Setup

To function correctly, the firewall on the computer running the jupyter
notebook server must be configured to allow connections from client
machines on the access port c.NotebookApp.port set in
:file:jupyter_notebook_config.py port to allow connections to the
web interface. The firewall must also allow connections from
127.0.0.1 (localhost) on ports from 49152 to 65535.
These ports are used by the server to communicate with the notebook kernels.
The kernel communication ports are chosen randomly by ZeroMQ, and may require
multiple connections per kernel, so a large range of ports must be accessible.

Running the notebook with a customized URL prefix

The notebook dashboard, which is the landing page with an overview
of the notebooks in your working directory, is typically found and accessed
at the default URL http://localhost:8888/.

If you prefer to customize the URL prefix for the notebook dashboard, you can
do so through modifying jupyter_notebook_config.py. For example, if you
prefer that the notebook dashboard be located with a sub-directory that
contains other ipython files, e.g. http://localhost:8888/ipython/,
you can do so with configuration options like the following (see above for
instructions about modifying jupyter_notebook_config.py):

c.NotebookApp.base_url = '/ipython/'

Embedding the notebook in another website

Sometimes you may want to embed the notebook somewhere on your website, e.g. in an IFrame.
To do this, you may need to override the Content-Security-Policy to allow embedding.
Assuming your website is at https://mywebsite.example.com,
you can embed the notebook on your website with the following configuration setting in jupyter_notebook_config.py:

c.NotebookApp.tornado_settings = {
 'headers': {
 'Content-Security-Policy': "frame-ancestors 'https://mywebsite.example.com' 'self' "
 }
}

When embedding the notebook in a website using an iframe,
consider putting the notebook in single-tab mode.
Since the notebook opens some links in new tabs by default,
single-tab mode keeps the notebook from opening additional tabs.
Adding the following to ~/.jupyter/custom/custom.js will enable single-tab mode:

define(['base/js/namespace'], function(Jupyter){
 Jupyter._target = '_self';
});

Known issues

Proxies

When behind a proxy, especially if your system or browser is set to autodetect
the proxy, the notebook web application might fail to connect to the server’s
websockets, and present you with a warning at startup. In this case, you need
to configure your system not to use the proxy for the server’s address.

For example, in Firefox, go to the Preferences panel, Advanced section,
Network tab, click ‘Settings...’, and add the address of the notebook server
to the ‘No proxy for’ field.

Docker CMD

Using jupyter notebook as a
Docker CMD [https://docs.docker.com/reference/builder/#cmd] results in
kernels repeatedly crashing, likely due to a lack of PID reaping [https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/].
To avoid this, use the tini [https://github.com/krallin/tini] init as your
Dockerfile ENTRYPOINT:

Add Tini. Tini operates as a process subreaper for jupyter. This prevents
kernel crashes.
ENV TINI_VERSION v0.6.0
ADD https://github.com/krallin/tini/releases/download/${TINI_VERSION}/tini /usr/bin/tini
RUN chmod +x /usr/bin/tini
ENTRYPOINT ["/usr/bin/tini", "--"]

EXPOSE 8888
CMD ["jupyter", "notebook", "--port=8888", "--no-browser", "--ip=0.0.0.0"]

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

Security in Jupyter notebooks

As Jupyter notebooks become more popular for sharing and collaboration,
the potential for malicious people to attempt to exploit the notebook
for their nefarious purposes increases. IPython 2.0 introduces a
security model to prevent execution of untrusted code without explicit
user input.

The problem

The whole point of Jupyter is arbitrary code execution. We have no
desire to limit what can be done with a notebook, which would negatively
impact its utility.

Unlike other programs, a Jupyter notebook document includes output.
Unlike other documents, that output exists in a context that can execute
code (via Javascript).

The security problem we need to solve is that no code should execute
just because a user has opened a notebook that they did not
write. Like any other program, once a user decides to execute code in
a notebook, it is considered trusted, and should be allowed to do
anything.

Our security model

	Untrusted HTML is always sanitized

	Untrusted Javascript is never executed

	HTML and Javascript in Markdown cells are never trusted

	Outputs generated by the user are trusted

	Any other HTML or Javascript (in Markdown cells, output generated by
others) is never trusted

	The central question of trust is “Did the current user do this?”

The details of trust

Jupyter notebooks store a signature in metadata, which is used to answer
the question “Did the current user do this?”

This signature is a digest of the notebooks contents plus a secret key,
known only to the user. The secret key is a user-only readable file in
the Jupyter profile’s security directory. By default, this is:

~/.jupyter/profile_default/security/notebook_secret

Note

The notebook secret being stored in the profile means that
loading a notebook in another profile results in it being untrusted,
unless you copy or symlink the notebook secret to share it across profiles.

When a notebook is opened by a user, the server computes a signature
with the user’s key, and compares it with the signature stored in the
notebook’s metadata. If the signature matches, HTML and Javascript
output in the notebook will be trusted at load, otherwise it will be
untrusted.

Any output generated during an interactive session is trusted.

Updating trust

A notebook’s trust is updated when the notebook is saved. If there are
any untrusted outputs still in the notebook, the notebook will not be
trusted, and no signature will be stored. If all untrusted outputs have
been removed (either via Clear Output or re-execution), then the
notebook will become trusted.

While trust is updated per output, this is only for the duration of a
single session. A notebook file on disk is either trusted or not in its
entirety.

Explicit trust

Sometimes re-executing a notebook to generate trusted output is not an
option, either because dependencies are unavailable, or it would take a
long time. Users can explicitly trust a notebook in two ways:

	At the command-line, with:

jupyter trust /path/to/notebook.ipynb

	After loading the untrusted notebook, with File / Trust Notebook

These two methods simply load the notebook, compute a new signature with
the user’s key, and then store the newly signed notebook.

Reporting security issues

If you find a security vulnerability in Jupyter, either a failure of the
code to properly implement the model described here, or a failure of the
model itself, please report it to security@ipython.org.

If you prefer to encrypt your security reports,
you can use this PGP public key.

Affected use cases

Some use cases that work in Jupyter 1.0 will become less convenient in
2.0 as a result of the security changes. We do our best to minimize
these annoyance, but security is always at odds with convenience.

Javascript and CSS in Markdown cells

While never officially supported, it had become common practice to put
hidden Javascript or CSS styling in Markdown cells, so that they would
not be visible on the page. Since Markdown cells are now sanitized (by
Google Caja [https://developers.google.com/caja]), all Javascript
(including click event handlers, etc.) and CSS will be stripped.

We plan to provide a mechanism for notebook themes, but in the meantime
styling the notebook can only be done via either custom.css or CSS
in HTML output. The latter only have an effect if the notebook is
trusted, because otherwise the output will be sanitized just like
Markdown.

Collaboration

When collaborating on a notebook, people probably want to see the
outputs produced by their colleagues’ most recent executions. Since each
collaborator’s key will differ, this will result in each share starting
in an untrusted state. There are three basic approaches to this:

	re-run notebooks when you get them (not always viable)

	explicitly trust notebooks via jupyter trust or the notebook menu
(annoying, but easy)

	share a notebook secret, and use a Jupyter profile dedicated to the
collaboration while working on the project.

Multiple profiles or machines

Since the notebook secret is stored in a profile directory by default,
opening a notebook with a different profile or on a different machine
will result in a different key, and thus be untrusted. The only current
way to address this is by sharing the notebook secret. This can be
facilitated by setting the configurable:

c.NotebookApp.secret_file = "/path/to/notebook_secret"

in each profile, and only sharing the secret once per machine.

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

Configuring the notebook frontend

Note

The ability to configure the notebook frontend UI and preferences is
still a work in progress.

This document is a rough explanation on how you can persist some configuration
options for the notebook JavaScript.

There is no exhaustive list of all the configuration options as most options
are passed down to other libraries, which means that non valid
configuration can be ignored without any error messages.

How front end configuration works

The frontend configuration system works as follows:

	get a handle of a configurable JavaScript object.

	access its configuration attribute.

	update its configuration attribute with a JSON patch.

Example - Changing the notebook’s default indentation

This example explains how to change the default setting indentUnit
for CodeMirror Code Cells:

var cell = Jupyter.notebook.get_selected_cell();
var config = cell.config;
var patch = {
 CodeCell:{
 cm_config:{indentUnit:2}
 }
 }
config.update(patch)

You can enter the previous snippet in your browser’s JavaScript console once.
Then reload the notebook page in your browser. Now, the preferred indent unit
should be equal to two spaces. The custom setting persists and you do not need
to reissue the patch on new notebooks.

indentUnit, used in this example, is one of the many CodeMirror options [https://codemirror.net/doc/manual.html#option_indentUnit] which are available
for configuration.

Example - Restoring the notebook’s default indentation

If you want to restore a notebook frontend preference to its default value,
you will enter a JSON patch with a null value for the preference setting.

For example, let’s restore the indent setting indentUnit to its default of
four spaces. Enter the following code snippet in your JavaScript console:

var cell = Jupyter.notebook.get_selected_cell();
var config = cell.config;
var patch = {
 CodeCell:{
 cm_config:{indentUnit: null} # only change here.
 }
 }
config.update(patch)

Reload the notebook in your browser and the default indent should again be two
spaces.

Persisting configuration settings

Under the hood, Jupyter will persist the preferred configuration settings in
~/.jupyter/nbconfig/<section>.json, with <section>
taking various value depending on the page where the configuration is issued.
<section> can take various values like notebook, tree, and
editor. A common section contains configuration settings shared by all
pages.

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

Extending the Notebook

Certain subsystems of the notebook server are designed to be extended or
overridden by users. These documents explain these systems, and show how to
override the notebook’s defaults with your own custom behavior.

	Contents API
	Data Model

	Writing a Custom ContentsManager

	Customizing Checkpoints

	Testing

	File save hooks
	Examples

	Custom request handlers
	Writing a notebook server extension

	Registering custom handlers

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

 	Extending the Notebook

Contents API

The Jupyter Notebook web application provides a graphical interface for
creating, opening, renaming, and deleting files in a virtual filesystem.

The ContentsManager class defines an abstract
API for translating these interactions into operations on a particular storage
medium. The default implementation,
FileContentsManager, uses the local
filesystem of the server for storage and straightforwardly serializes notebooks
into JSON. Users can override these behaviors by supplying custom subclasses
of ContentsManager.

This section describes the interface implemented by ContentsManager subclasses.
We refer to this interface as the Contents API.

Data Model

Filesystem Entities

ContentsManager methods represent virtual filesystem entities as dictionaries,
which we refer to as models.

Models may contain the following entries:

	Key
	Type
	Info

	name
	unicode
	Basename of the entity.

	path
	unicode
	Full
(API-style)
path to the entity.

	type
	unicode
	The entity type. One of
"notebook", "file" or
"directory".

	created
	datetime
	Creation date of the entity.

	last_modified
	datetime
	Last modified date of the
entity.

	content
	variable
	The “content” of the entity.
(See
Below)

	mimetype
	unicode or
None
	The mimetype of content,
if any. (See
Below)

	format
	unicode or
None
	The format of content,
if any. (See
Below)

Certain model fields vary in structure depending on the type field of the
model. There are three model types: notebook, file, and directory .

	
	notebook models

	
	The format field is always "json".

	The mimetype field is always None.

	The content field contains a
nbformat.notebooknode.NotebookNode representing the .ipynb file
represented by the model. See the NBFormat [http://nbformat.readthedocs.org/en/latest/index.html] documentation for a full
description.

	
	file models

	
	The format field is either "text" or "base64".

	The mimetype field is text/plain for text-format models and
application/octet-stream for base64-format models.

	The content field is always of type unicode. For text-format
file models, content simply contains the file’s bytes after decoding
as UTF-8. Non-text (base64) files are read as bytes, base64 encoded,
and then decoded as UTF-8.

	
	directory models

	
	The format field is always "json".

	The mimetype field is always None.

	The content field contains a list of content-free
models representing the entities in the directory.

Note

In certain circumstances, we don’t need the full content of an entity to
complete a Contents API request. In such cases, we omit the mimetype,
content, and format keys from the model. This most commonly occurs
when listing a directory, in which circumstance we represent files within
the directory as content-less models to avoid having to recursively traverse
and serialize the entire filesystem.

Sample Models

Notebook Model with Content
{
 'content': {
 'metadata': {},
 'nbformat': 4,
 'nbformat_minor': 0,
 'cells': [
 {
 'cell_type': 'markdown',
 'metadata': {},
 'source': 'Some **Markdown**',
 },
],
 },
 'created': datetime(2015, 7, 25, 19, 50, 19, 19865),
 'format': 'json',
 'last_modified': datetime(2015, 7, 25, 19, 50, 19, 19865),
 'mimetype': None,
 'name': 'a.ipynb',
 'path': 'foo/a.ipynb',
 'type': 'notebook',
 'writable': True,
}

Notebook Model without Content
{
 'content': None,
 'created': datetime.datetime(2015, 7, 25, 20, 17, 33, 271931),
 'format': None,
 'last_modified': datetime.datetime(2015, 7, 25, 20, 17, 33, 271931),
 'mimetype': None,
 'name': 'a.ipynb',
 'path': 'foo/a.ipynb',
 'type': 'notebook',
 'writable': True
}

API Paths

ContentsManager methods represent the locations of filesystem resources as
API-style paths. Such paths are interpreted as relative to the root
directory of the notebook server. For compatibility across systems, the
following guarantees are made:

	Paths are always unicode, not bytes.

	Paths are not URL-escaped.

	Paths are always forward-slash (/) delimited, even on Windows.

	Leading and trailing slashes are stripped. For example, /foo/bar/buzz/
becomes foo/bar/buzz.

	The empty string ("") represents the root directory.

Writing a Custom ContentsManager

The default ContentsManager is designed for users running the notebook as an
application on a personal computer. It stores notebooks as .ipynb files on the
local filesystem, and it maps files and directories in the Notebook UI to files
and directories on disk. It is possible to override how notebooks are stored
by implementing your own custom subclass of ContentsManager. For example,
if you deploy the notebook in a context where you don’t trust or don’t have
access to the filesystem of the notebook server, it’s possible to write your
own ContentsManager that stores notebooks and files in a database.

Required Methods

A minimal complete implementation of a custom
ContentsManager must implement the following
methods:

	ContentsManager.get(path[,content,type,...])
	Get a file or directory model.

	ContentsManager.save(model,path)
	Save a file or directory model to path.

	ContentsManager.delete_file(path)
	Delete the file or directory at path.

	ContentsManager.rename_file(old_path,new_path)
	Rename a file or directory.

	ContentsManager.file_exists([path])
	Does a file exist at the given path?

	ContentsManager.dir_exists(path)
	Does a directory exist at the given path?

	ContentsManager.is_hidden(path)
	Is path a hidden directory or file?

Customizing Checkpoints

TODO:

Testing

notebook.services.contents.tests includes several test suites written
against the abstract Contents API. This means that an excellent way to test a
new ContentsManager subclass is to subclass our tests to make them use your
ContentsManager.

Note

PGContents [https://github.com/quantopian/pgcontents] is an example of a complete implementation of a custom
ContentsManager. It stores notebooks and files in PostgreSQL [http://www.postgresql.org/] and encodes
directories as SQL relations. PGContents also provides an example of how to
re-use the notebook’s tests.

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

 	Extending the Notebook

File save hooks

You can configure functions that are run whenever a file is saved. There are
two hooks available:

	ContentsManager.pre_save_hook runs on the API path and model with content.
This can be used for things like stripping output that people don’t like
adding to VCS noise.

	FileContentsManager.post_save_hook runs on the filesystem path and model
without content. This could be used to commit changes after every save, for
instance.

They are both called with keyword arguments:

pre_save_hook(model=model, path=path, contents_manager=cm)
post_save_hook(model=model, os_path=os_path, contents_manager=cm)

Examples

These can both be added to jupyter_notebook_config.py.

A pre-save hook for stripping output:

def scrub_output_pre_save(model, **kwargs):
 """scrub output before saving notebooks"""
 # only run on notebooks
 if model['type'] != 'notebook':
 return
 # only run on nbformat v4
 if model['content']['nbformat'] != 4:
 return

 for cell in model['content']['cells']:
 if cell['cell_type'] != 'code':
 continue
 cell['outputs'] = []
 cell['execution_count'] = None

c.FileContentsManager.pre_save_hook = scrub_output_pre_save

A post-save hook to make a script equivalent whenever the notebook is saved
(replacing the --script option in older versions of the notebook):

import io
import os
from notebook.utils import to_api_path

_script_exporter = None

def script_post_save(model, os_path, contents_manager, **kwargs):
 """convert notebooks to Python script after save with nbconvert

 replaces `ipython notebook --script`
 """
 from nbconvert.exporters.script import ScriptExporter

 if model['type'] != 'notebook':
 return

 global _script_exporter
 if _script_exporter is None:
 _script_exporter = ScriptExporter(parent=contents_manager)
 log = contents_manager.log

 base, ext = os.path.splitext(os_path)
 py_fname = base + '.py'
 script, resources = _script_exporter.from_filename(os_path)
 script_fname = base + resources.get('output_extension', '.txt')
 log.info("Saving script /%s", to_api_path(script_fname, contents_manager.root_dir))
 with io.open(script_fname, 'w', encoding='utf-8') as f:
 f.write(script)
c.FileContentsManager.post_save_hook = script_post_save

This could be a simple call to jupyter nbconvert --to script, but spawning
the subprocess every time is quite slow.

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

 	Extending the Notebook

Custom request handlers

The notebook webserver can be interacted with using a well defined
RESTful
API [http://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyter/jupyter-js-services/master/rest_api.yaml].
You can define custom RESTful API handlers in addition to the ones
provided by the notebook. As described below, to define a custom handler
you need to first write a notebook server extension. Then, in the
extension, you can register the custom handler.

Writing a notebook server extension

The notebook webserver is written in Python, hence your server extension
should be written in Python too. Server extensions, like IPython
extensions, are Python modules that define a specially named load
function, load_jupyter_server_extension. This function is called
when the extension is loaded.

def load_jupyter_server_extension(nb_server_app):
 """
 Called when the extension is loaded.

 Args:
 nb_server_app (NotebookWebApplication): handle to the Notebook webserver instance.
 """
 pass

To get the notebook server to load your custom extension, you’ll need to
add it to the list of extensions to be loaded. You can do this using the
config system. NotebookApp.server_extensions is a config variable
which is an array of strings, each a Python module to be imported.
Because this variable is notebook config, you can set it two different
ways, using config files or via the command line.

For example, to get your extension to load via the command line add a
double dash before the variable name, and put the Python array in
double quotes. If your package is “mypackage” and module is
“mymodule”, this would look like
jupyter notebook --NotebookApp.server_extensions="['mypackage.mymodule']"
.
Basically the string should be Python importable.

Alternatively, you can have your extension loaded regardless of the
command line args by setting the variable in the Jupyter config file.
The default location of the Jupyter config file is
~/.jupyter/profile_default/jupyter_notebook_config.py. Then, inside
the config file, you can use Python to set the variable. For example,
the following config does the same as the previous command line example
[1].

c = get_config()
c.NotebookApp.server_extensions = [
 'mypackage.mymodule'
]

Before continuing, it’s a good idea to verify that your extension is
being loaded. Use a print statement to print something unique. Launch
the notebook server and you should see your statement printed to the
console.

Registering custom handlers

Once you’ve defined a server extension, you can register custom handlers
because you have a handle to the Notebook server app instance
(nb_server_app above). However, you first need to define your custom
handler. To declare a custom handler, inherit from
notebook.base.handlers.IPythonHandler. The example below[1] is a
Hello World handler:

from notebook.base.handlers import IPythonHandler

class HelloWorldHandler(IPythonHandler):
 def get(self):
 self.finish('Hello, world!')

The Jupyter Notebook server use
Tornado [http://www.tornadoweb.org/en/stable/] as its web framework.
For more information on how to implement request handlers, refer to the
Tornado documentation on the
matter [http://www.tornadoweb.org/en/stable/web.html#request-handlers].

After defining the handler, you need to register the handler with the
Notebook server. See the following example:

web_app = nb_server_app.web_app
host_pattern = '.*$'
route_pattern = url_path_join(web_app.settings['base_url'], '/hello')
web_app.add_handlers(host_pattern, [(route_pattern, HelloWorldHandler)])

Putting this together with the extension code, the example looks like the
following:

from notebook.utils import url_path_join
from notebook.base.handlers import IPythonHandler

class HelloWorldHandler(IPythonHandler):
 def get(self):
 self.finish('Hello, world!')

def load_jupyter_server_extension(nb_server_app):
 """
 Called when the extension is loaded.

 Args:
 nb_server_app (NotebookWebApplication): handle to the Notebook webserver instance.
 """
 web_app = nb_server_app.web_app
 host_pattern = '.*$'
 route_pattern = url_path_join(web_app.settings['base_url'], '/hello')
 web_app.add_handlers(host_pattern, [(route_pattern, HelloWorldHandler)])

References:
1. Peter Parente’s
Mindtrove [http://mindtrove.info/#nb-server-exts]

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

Want to contribute?

Here are some resources to help you get started with setting up a
development environment, how to contribute, and technical aspects of
contributing.

Notebook project developer guides

These guides provide information about specific topics related to developing
the Notebook.

	Installing JavaScript machinery

	Making a notebook release

	Developer FAQ

Jupyter developer guides

The Project Jupyter organization has more general documentation about
contributing to Jupyter projects. Currently, this is available in the Jupyter
documentation in the
Developer Documentation [https://jupyter.readthedocs.org/en/latest/#dev-docs]
section.

Some of the topics include:

	Submitting a Bug

	Submitting an Enhancement Proposal

	Contributing to the Documentation

	Git and Github Resources

	Contributing to the Code

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

 	Want to contribute?

Installing JavaScript machinery

Note

This section is prepared for contributors to the Notebook source code.
Users of the released Notebook do not need to install the JavaScript
tools.

Building the Notebook from its GitHub source code requires some tools to
create and minify JavaScript components and the CSS. These tools and the
following steps are used when making a Notebook release.

	Install Node.js [https://nodejs.org] and npm.

	Using the installers on Node.js [https://nodejs.org] website:
Select a pre-built installer
on the Node.js [https://nodejs.org] website. The installer will include Node.js and
Node’s package manager, npm.

	Using system’s package manager:
Install Node.js and npm using the
system’s package manager. For example, the command for Ubuntu or Debian
is:

sudo apt-get install nodejs-legacy npm

	Install the notebook:

In the notebook repo, do a development install:

pip install -e .

	Rebuild JavaScript and CSS

There is a build step for the JavaScript and CSS in the notebook.
You will need to run this command whenever there are changes to JavaScript or LESS sources:

python setup.py js css

This command will automatically fetch any missing dependencies (bower,
less) and install them in a subdirectory.

Prototyping tip

When doing prototyping which needs quick iteration of the Notebook’s
JavaScript, run npm run build:watch in the root of the repository.
This will cause WebPack to monitor the files you edit and recompile
them on the fly.

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

 	Want to contribute?

Making a notebook release

This document guides a contributor through creating a release of the Jupyter
notebook.

Check installed tools

Review Installing JavaScript machinery. Make sure all the tools needed to generate the
minified JavaScript and CSS files are properly installed.

Clean the repository

You can remove all non-tracked files with:

git clean -xfdi

This would ask you for confirmation before removing all untracked files. Make
sure the dist/ folder is clean and avoid stale build from
previous attempts.

Create the release

	Update version number in notebook/_version.py.

	Run this command:

python setup.py jsversion

It will modify (at least) notebook/static/base/js/namespace.js which
makes the notebook version available from within JavaScript.

	Commit and tag the release with the current version number:

git commit -am "release $VERSION"
git tag $VERSION

	You are now ready to build the sdist and wheel:

python setup.py sdist --formats=zip,gztar
python setup.py bdist_wheel

	You can now test the wheel and the sdist locally before uploading
to PyPI. Make sure to use twine [https://github.com/pypa/twine] to
upload the archives over SSL.

twine upload dist/*

	If all went well, change the notebook/_version.py back adding the
.dev suffix.

	Push directly on master, not forgetting to push --tags too.

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

 	Want to contribute?

Developer FAQ

	How do I install a prerelease version such as a beta or release candidate?

python -m pip install notebook --pre --upgrade

	What are the basic steps for a development install?

git clone https://github.com/jupyter/notebook
cd notebook
python setup.py js css
pip install -e .

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

 	Want to contribute?

Installing JavaScript machinery

Note

This section is prepared for contributors to the Notebook source code.
Users of the released Notebook do not need to install the JavaScript
tools.

Building the Notebook from its GitHub source code requires some tools to
create and minify JavaScript components and the CSS. These tools and the
following steps are used when making a Notebook release.

	Install Node.js [https://nodejs.org] and npm.

	Using the installers on Node.js [https://nodejs.org] website:
Select a pre-built installer
on the Node.js [https://nodejs.org] website. The installer will include Node.js and
Node’s package manager, npm.

	Using system’s package manager:
Install Node.js and npm using the
system’s package manager. For example, the command for Ubuntu or Debian
is:

sudo apt-get install nodejs-legacy npm

	Install the notebook:

In the notebook repo, do a development install:

pip install -e .

	Rebuild JavaScript and CSS

There is a build step for the JavaScript and CSS in the notebook.
You will need to run this command whenever there are changes to JavaScript or LESS sources:

python setup.py js css

This command will automatically fetch any missing dependencies (bower,
less) and install them in a subdirectory.

Prototyping tip

When doing prototyping which needs quick iteration of the Notebook’s
JavaScript, run npm run build:watch in the root of the repository.
This will cause WebPack to monitor the files you edit and recompile
them on the fly.

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

 	Want to contribute?

Making a notebook release

This document guides a contributor through creating a release of the Jupyter
notebook.

Check installed tools

Review Installing JavaScript machinery. Make sure all the tools needed to generate the
minified JavaScript and CSS files are properly installed.

Clean the repository

You can remove all non-tracked files with:

git clean -xfdi

This would ask you for confirmation before removing all untracked files. Make
sure the dist/ folder is clean and avoid stale build from
previous attempts.

Create the release

	Update version number in notebook/_version.py.

	Run this command:

python setup.py jsversion

It will modify (at least) notebook/static/base/js/namespace.js which
makes the notebook version available from within JavaScript.

	Commit and tag the release with the current version number:

git commit -am "release $VERSION"
git tag $VERSION

	You are now ready to build the sdist and wheel:

python setup.py sdist --formats=zip,gztar
python setup.py bdist_wheel

	You can now test the wheel and the sdist locally before uploading
to PyPI. Make sure to use twine [https://github.com/pypa/twine] to
upload the archives over SSL.

twine upload dist/*

	If all went well, change the notebook/_version.py back adding the
.dev suffix.

	Push directly on master, not forgetting to push --tags too.

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

 	Want to contribute?

Developer FAQ

	How do I install a prerelease version such as a beta or release candidate?

python -m pip install notebook --pre --upgrade

	What are the basic steps for a development install?

git clone https://github.com/jupyter/notebook
cd notebook
python setup.py js css
pip install -e .

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

 View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Examples%20and%20Tutorials%20Index.ipynb]

Examples and Tutorials

This portion of the documentation was generated from notebook files. You
can download the original interactive notebook files using the links at
the tops and bottoms of the pages.

Tutorials

	What is the Jupyter
Notebook

	Notebook Basics

	Running Code

	Working With Markdown
Cells

	Custom Keyboard Shortcuts

	JavaScript Notebook
Extensions

Examples

	Importing Notebooks

	Connecting with the Qt
Console

	Typesetting Equations

View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Examples%20and%20Tutorials%20Index.ipynb]

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Jupyter Notebook 5.0.0.dev documentation

Jupyter notebook changelog

A summary of changes in the Jupyter notebook.
For more detailed information, see GitHub [https://github.com/jupyter/notebook].

4.1.0

Bug fixes:

	Properly reap zombie subprocesses

	Fix cross-origin problems

	Fix double-escaping of the base URL prefix

	Handle invalid unicode filenames more gracefully

	Fix ANSI color-processing

	Send keepalive messages for web terminals

	Fix bugs in the notebook tour

UI changes:

	Moved the cell toolbar selector into the View menu. Added a button that triggers a “hint” animation to the main toolbar so users can find the new location. (Click here to see a screencast [https://cloud.githubusercontent.com/assets/335567/10711889/59665a5a-7a3e-11e5-970f-86b89592880c.gif])

[image: _images/cell-toolbar-41.png]

	Added Restart & Run All to the Kernel menu. Users can also bind it to a keyboard shortcut on action restart-kernel-and-run-all-cells.

	Added multiple-cell selection. Users press Shift-Up/Down or Shift-K/J to extend selection in command mode. Various actions such as cut/copy/paste, execute, and cell type conversions apply to all selected cells.

[image: _images/multi-select-41.png]

	Added a command palette for executing Jupyter actions by name. Users press Cmd/Ctrl-Shift-P or click the new command palette icon on the toolbar.

[image: _images/command-palette-41.png]

	Added a Find and Replace dialog to the Edit menu. Users can also press F in command mode to show the dialog.

[image: _images/find-replace-41.png]

Other improvements:

	Custom KernelManager methods can be Tornado coroutines, allowing async operations.

	Make clearing output optional when rewriting input with set_next_input(replace=True).

	Added support for TLS client authentication via --NotebookApp.client-ca.

	Added tags to jupyter/notebook releases on DockerHub. latest continues to track the master branch.

See the 4.1 milestone on GitHub for a complete list of issues [https://github.com/jupyter/notebook/issues?page=3&q=milestone%3A4.1+is%3Aclosed+is%3Aissue&utf8=%E2%9C%93] and pull requests [https://github.com/jupyter/notebook/pulls?q=milestone%3A4.1+is%3Aclosed+is%3Apr] handled.

4.0.x

4.0.6

	fix installation of mathjax support files

	fix some double-escape regressions in 4.0.5

	fix a couple of cases where errors could prevent opening a notebook

4.0.5

Security fixes for maliciously crafted files.

	CVE-2015-6938 [http://www.openwall.com/lists/oss-security/2015/09/02/3]: malicious filenames

	CVE-2015-7337 [http://www.openwall.com/lists/oss-security/2015/09/16/3]: malicious binary files in text editor.

Thanks to Jonathan Kamens at Quantopian and Juan Broullón for the reports.

4.0.4

	Fix inclusion of mathjax-safe extension

4.0.2

	Fix launching the notebook on Windows

	Fix the path searched for frontend config

4.0.0

First release of the notebook as a standalone package.

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Jupyter Notebook 5.0.0.dev documentation

Index

 Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

 examples/Notebook/rstversions/JavaScript Notebook Extensions.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

 View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/JavaScript%20Notebook%20Extensions.ipynb]

Embracing web standards

One of the main reasons why we developed the current notebook web
application was to embrace the web technology.

By being a pure web application using HTML, Javascript, and CSS, the
Notebook can get all the web technology improvement for free. Thus, as
browser support for different media extend, the notebook web app should
be able to be compatible without modification.

This is also true with performance of the User Interface as the speed of
Javascript VM increases.

The other advantage of using only web technology is that the code of the
interface is fully accessible to the end user and is modifiable live.
Even if this task is not always easy, we strive to keep our code as
accessible and reusable as possible. This should allow us - with minimum
effort - development of small extensions that customize the behavior of
the web interface.

Tampering with the Notebook application

The first tool that is available to you and that you should be aware of
are browser “developers tool”. The exact naming can change across
browser and might require the installation of extensions. But basically
they can allow you to inspect/modify the DOM, and interact with the
javascript code that runs the frontend.

		In Chrome and Safari, Developer tools are in the menu
View > Developer > Javascript Console

		In Firefox you might need to install
Firebug [http://getfirebug.com/]

Those will be your best friends to debug and try different approaches
for your extensions.

Injecting JS

Using magics

The above tools can be tedious for editing edit long JavaScript files.
Therefore we provide the %%javascript magic. This allows you to
quickly inject JavaScript into the notebook. Still the javascript
injected this way will not survive reloading. Hence, it is a good tool
for testing an refining a script.

You might see here and there people modifying css and injecting js into
the notebook by reading file(s) and publishing them into the notebook.
Not only does this often break the flow of the notebook and make the
re-execution of the notebook broken, but it also means that you need to
execute those cells in the entire notebook every time you need to update
the code.

This can still be useful in some cases, like the %autosave magic
that allows you to control the time between each save. But this can be
replaced by a JavaScript dropdown menu to select the save interval.

you can inspect the autosave code to see what it does.
%autosave??

custom.js

To inject Javascript we provide an entry point: custom.js that
allows the user to execute and load other resources into the notebook.
Javascript code in custom.js will be executed when the notebook app
starts and can then be used to customize almost anything in the UI and
in the behavior of the notebook.

custom.js can be found in the Jupyter dir. You can share your
custom.js with others.

Back to theory

from jupyter_core.paths import jupyter_config_dir
jupyter_dir = jupyter_config_dir()
jupyter_dir

and custom js is in

import os.path
custom_js_path = os.path.join(jupyter_dir, 'custom', 'custom.js')

my custom js
if os.path.isfile(custom_js_path):
 with open(custom_js_path) as f:
 print(f.read())
else:
 print("You don't have a custom.js file")

Note that custom.js is meant to be modified by user. When writing a
script, you can define it in a separate file and add a line of
configuration into custom.js that will fetch and execute the file.

Warning : even if modification of custom.js takes effect
immediately after browser refresh (except if browser cache is
aggressive), creating a file in static/ directory needs a server
restart.

Exercise :

		Create a custom.js in the right location with the following
content:

alert("hello world from custom.js")

		Restart your server and open any notebook.

		Be greeted by custom.js

Have a look at default
custom.js [https://github.com/jupyter/notebook/blob/4.0.x/notebook/static/custom/custom.js],
to see it’s content and for more explanation.

For the quick ones :

We’ve seen above that you can change the autosave rate by using a magic.
This is typically something I don’t want to type every time, and that I
don’t like to embed into my workflow and documents. (readers don’t care
what my autosave time is). Let’s build an extension that allows us to do
it.

Create a dropdown element in the toolbar (DOM
Jupyter.toolbar.element), you will need

		Jupyter.notebook.set_autosave_interval(miliseconds)

		know that 1 min = 60 sec, and 1 sec = 1000 ms

var label = jQuery('<label/>').text('AutoScroll Limit:');
var select = jQuery('<select/>')
 //.append(jQuery('<option/>').attr('value', '2').text('2min (default)'))
 .append(jQuery('<option/>').attr('value', undefined).text('disabled'))

 // TODO:
 //the_toolbar_element.append(label)
 //the_toolbar_element.append(select);

select.change(function() {
 var val = jQuery(this).val() // val will be the value in [2]
 // TODO
 // this will be called when dropdown changes

});

var time_m = [1,5,10,15,30];
for (var i=0; i < time_m.length; i++) {
 var ts = time_m[i];
 //[2] ____ this will be `val` on [1]
 // |
 // v
 select.append($('<option/>').attr('value', ts).text(thr+'min'));
 // this will fill up the dropdown `select` with
 // 1 min
 // 5 min
 // 10 min
 // 10 min
 // ...
}

A non-interactive example first

I like my cython to be nicely highlighted

Jupyter.config.cell_magic_highlight['magic_text/x-cython'] = {}
Jupyter.config.cell_magic_highlight['magic_text/x-cython'].reg = [/^%%cython/]

text/x-cython is the name of CodeMirror mode name, magic_ prefix
will just patch the mode so that the first line that contains a magic
does not screw up the highlighting. regis a list or regular
expression that will trigger the change of mode.

Get more documentation

Sadly, you will have to read the js source file (but there are lots of
comments) and/or build the JavaScript documentation using yuidoc. If you
have node and yui-doc installed:

$ cd ~/jupyter/notebook/notebook/static/notebook/js/
$ yuidoc . --server
warn: (yuidoc): Failed to extract port, setting to the default :3000
info: (yuidoc): Starting YUIDoc@0.3.45 using YUI@3.9.1 with NodeJS@0.10.15
info: (yuidoc): Scanning for yuidoc.json file.
info: (yuidoc): Starting YUIDoc with the following options:
info: (yuidoc):
{ port: 3000,
 nocode: false,
 paths: ['.'],
 server: true,
 outdir: './out' }
info: (yuidoc): Scanning for yuidoc.json file.
info: (server): Starting server: http://127.0.0.1:3000

and browse http://127.0.0.1:3000 to get documentation

Some convenience methods

By browsing the documentation you will see that we have some convenience
methods that allows us to avoid re-inventing the UI every time :

Jupyter.toolbar.add_buttons_group([
 {
 'label' : 'run qtconsole',
 'icon' : 'icon-terminal', // select your icon from
 // http://fortawesome.github.io/Font-Awesome/icons/
 'callback': function(){Jupyter.notebook.kernel.execute('%qtconsole')}
 }
 // add more button here if needed.
]);

with a lot of
icons [http://fortawesome.github.io/Font-Awesome/icons/] you can
select from.

Cell Metadata

The most requested feature is generally to be able to distinguish an
individual cell in the notebook, or run a specific action with them. To
do so, you can either use Jupyter.notebook.get_selected_cell(), or
rely on CellToolbar. This allows you to register a set of actions
and graphical elements that will be attached to individual cells.

Cell Toolbar

You can see some example of what can be done by toggling the
Cell Toolbar selector in the toolbar on top of the notebook. It
provides two default presets that are Default and slideshow.
Default allows the user to edit the metadata attached to each cell
manually.

First we define a function that takes at first parameter an element on
the DOM in which to inject UI element. The second element is the cell
this element wis registered with. Then we will need to register that
function and give it a name.

Register a callback

%%javascript
var CellToolbar = Jupyter.CellToolbar
var toggle = function(div, cell) {
 var button_container = $(div)

 // let's create a button that shows the current value of the metadata
 var button = $('<button/>').addClass('btn btn-mini').text(String(cell.metadata.foo));

 // On click, change the metadata value and update the button label
 button.click(function(){
 var v = cell.metadata.foo;
 cell.metadata.foo = !v;
 button.text(String(!v));
 })

 // add the button to the DOM div.
 button_container.append(button);
}

 // now we register the callback under the name foo to give the
 // user the ability to use it later
 CellToolbar.register_callback('tuto.foo', toggle);

Registering a preset

This function can now be part of many preset of the CellToolBar.

%%javascript
Jupyter.CellToolbar.register_preset('Tutorial 1',['tuto.foo','default.rawedit'])
Jupyter.CellToolbar.register_preset('Tutorial 2',['slideshow.select','tuto.foo'])

You should now have access to two presets :

		Tutorial 1

		Tutorial 2

And check that the buttons you defined share state when you toggle
preset. Also check that the metadata of the cell is modified when you
click the button, and that when saved on reloaded the metadata is still
available.

Exercise:

Try to wrap the all code in a file, put this file in
{profile}/static/custom/<a-name>.js, and add

require(['custom/<a-name>']);

in custom.js to have this script automatically loaded in all your
notebooks.

require is provided by a javascript
library [http://requirejs.org/] that allow you to express dependency.
For simple extension like the previous one we directly mute the global
namespace, but for more complex extension you could pass a callback to
require([...], <callback>) call, to allow the user to pass
configuration information to your plugin.

In Python lang,

require(['a/b', 'c/d'], function(e, f){
 e.something()
 f.something()
})

could be read as

import a.b as e
import c.d as f
e.something()
f.something()

See for example @damianavila “ZenMode”
plugin [https://github.com/ipython-contrib/IPython-notebook-extensions/blob/master/custom.example.js#L34]
:

// read that as
// import custom.zenmode.main as zenmode
require(['custom/zenmode/main'],function(zenmode){
 zenmode.background('images/back12.jpg');
})

For the quickest

Try to use the
following [https://github.com/ipython/ipython/blob/1.x/IPython/html/static/notebook/js/celltoolbar.js#L367]
to bind a dropdown list to cell.metadata.difficulty.select.

It should be able to take the 4 following values :

		<None>

		Easy

		Medium

		Hard

We will use it to customiZe the output of the converted notebook
depending on the tag on each cell

%load soln/celldiff.js

View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/JavaScript%20Notebook%20Extensions.ipynb]

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

examples/Notebook/rstversions/Custom Keyboard Shortcuts.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

 View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Custom%20Keyboard%20Shortcuts.ipynb]

Keyboard Shortcut Customization

Starting with IPython 2.0 keyboard shortcuts in command and edit mode
are fully customizable. These customizations are made using the Jupyter
JavaScript API. Here is an example that makes the r key available
for running a cell:

%%javascript

Jupyter.keyboard_manager.command_shortcuts.add_shortcut('r', {
 help : 'run cell',
 help_index : 'zz',
 handler : function (event) {
 IPython.notebook.execute_cell();
 return false;
 }}
);

“By default the keypress r, while in command mode, changes the type
of the selected cell to raw. This shortcut is overridden by the code
in the previous cell, and thus the action no longer be available via the
keypress r.”

There are a couple of points to mention about this API:

		The help_index field is used to sort the shortcuts in the
Keyboard Shortcuts help dialog. It defaults to zz.

		When a handler returns false it indicates that the event should
stop propagating and the default action should not be performed. For
further details about the event object or event handling, see the
jQuery docs.

		If you don’t need a help or help_index field, you can simply
pass a function as the second argument to add_shortcut.

%%javascript

Jupyter.keyboard_manager.command_shortcuts.add_shortcut('r', function (event) {
 IPython.notebook.execute_cell();
 return false;
});

Likewise, to remove a shortcut, use remove_shortcut:

%%javascript

Jupyter.keyboard_manager.command_shortcuts.remove_shortcut('r');

If you want your keyboard shortcuts to be active for all of your
notebooks, put the above API calls into your custom.js file.

Of course we provide name for majority of existing action so that you do
not have to re-write everything, here is for example how to bind r
back to it’s initial behavior:

%%javascript

Jupyter.keyboard_manager.command_shortcuts.add_shortcut('r', 'jupyter-notebook:change-cell-to-raw');

View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Custom%20Keyboard%20Shortcuts.ipynb]

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

extending/frontend_extensions.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

Custom front-end extensions

This describes the basic steps to write a JavaScript extension for the Jupyter
notebook front-end. This allows you to customize the behaviour of the various
pages like the dashboard, the notebook, or the text editor.

The structure of a front-end extension

Note

The notebook front-end and Javascript API are not stable, and are subject
to a lot of changes. Any extension written for the current notebook is
almost guaranteed to break in the next release.

A front-end extension is a JavaScript file that defines an AMD module [https://en.wikipedia.org/wiki/Asynchronous_module_definition]
which exposes at least a function called load_ipython_extension, which
takes no arguments. We will not get into the details of what each of these
terms consists of yet, but here is the minimal code needed for a working
extension:

// file my_extension/main.js

define(function(){

 function load_ipython_extension(){
 console.info('this is my first extension');
 }

 return {
 load_ipython_extension: load_ipython_extension
 };
});

Note

Although for historical reasons the function is called
load_ipython_extension, it does apply to the Jupyter notebook in
general, and will work regardless of the kernel in use.

If you are familiar with JavaScript, you can use this template to require any
Jupyter module and modify its configuration, or do anything else in client-side
Javascript. Your extension will be loaded at the right time during the notebook
page initialisation for you to set up a listener for the various events that
the page can trigger.

You might want access to the current instances of the various Jupyter notebook
components on the page, as opposed to the classes defined in the modules. The
current instances are exposed by a module named base/js/namespace. If you
plan on accessing instances on the page, you should require this module
rather than accessing the global variable Jupyter, which will be removed in
future. The following example demonstrates how to access the current notebook
instance:

// file my_extension/main.js

define([
 'base/js/namespace'
], function(
 Jupyter
) {
 function load_ipython_extension() {
 console.log(
 'This is the current notebook application instance:',
 Jupyter.notebook
);
 }

 return {
 load_ipython_extension: load_ipython_extension
 };
});

Modifying key bindings

One of the abilities of extensions is to modify key bindings, although once
again this is an API which is not guaranteed to be stable. However, custom key
bindings are frequently requested, and are helpful to increase accessibility,
so in the following we show how to access them.

Here is an example of an extension that will unbind the shortcut 0,0 in
command mode, which normally restarts the kernel, and bind 0,0,0 in its
place:

// file my_extension/main.js

define([
 'base/js/namespace'
], function(
 Jupyter
) {

 function load_ipython_extension() {
 Jupyter.keyboard_manager.command_shortcuts.remove_shortcut('0,0');
 Jupyter.keyboard_manager.command_shortcuts.add_shortcut('0,0,0', 'jupyter-notebook:restart-kernel');
 }

 return {
 load_ipython_extension: load_ipython_extension
 };
});

Note

The standard keybindings might not work correctly on non-US keyboards.
Unfortunately, this is a limitation of browser implementations and the
status of keyboard event handling on the web in general. We appreciate your
feedback if you have issues binding keys, or have any ideas to help improve
the situation.

You can see that I have used the action name
jupyter-notebook:restart-kernel to bind the new shortcut. There is no API
yet to access the list of all available actions, though the following in the
JavaScript console of your browser on a notebook page should give you an idea
of what is available:

Object.keys(require('base/js/namespace').actions._actions);

In this example, we changed a keyboard shortcut in command mode; you
can also customize keyboard shortcuts in edit mode.
However, most of the keyboard shortcuts in edit mode are handled by CodeMirror,
which supports custom key bindings via a completely different API.

Defining and registering your own actions

As part of your front-end extension, you may wish to define actions, which can
be attached to toolbar buttons, or called from the command palette. Here is an
example of an extension that defines a (not very useful!) action to show an
alert, and adds a toolabr button using the full action name:

// file my_extension/main.js

define([
 'base/js/namespace'
], function(
 Jupyter
) {
 function load_ipython_extension() {

 var handler = function () {
 alert('this is an alert from my_extension!');
 };

 var action = {
 icon: 'fa-comment-o', // a font-awesome class used on buttons, etc
 help : 'Show an alert',
 help_index : 'zz',
 handler : handler
 };
 var prefix = 'my_extension';
 var action_name = 'show-alert';

 var full_action_name = Jupyter.actions.register(action, name, prefix); // returns 'my_extension:show-alert'
 Jupyter.toolbar.add_buttons_group([full_action_name]);
 }

 return {
 load_ipython_extension: load_ipython_extension
 };
});

Every action needs a name, which, when joined with its prefix to make the full
action name, should be unique. Built-in actions, like the
jupyter-notebook:restart-kernel we bound in the earlier
Modifying key bindings example, use the prefix jupyter-notebook. For
actions defined in an extension, it makes sense to use the extension name as
the prefix. For the action name, the following guidelines should be considered:

		First pick a noun and a verb for the action. For example, if the action is
“restart kernel,” the verb is “restart” and the noun is “kernel”.

		Omit terms like “selected” and “active” by default, so “delete-cell”, rather
than “delete-selected-cell”. Only provide a scope like “-all-” if it is other
than the default “selected” or “active” scope.

		If an action has a secondary action, separate the secondary action with
“-and-”, so “restart-kernel-and-clear-output”.

		Use above/below or previous/next to indicate spatial and sequential
relationships.

		Don’t ever use before/after as they have a temporal connotation that is
confusing when used in a spatial context.

		For dialogs, use a verb that indicates what the dialog will accomplish, such
as “confirm-restart-kernel”.

Installing and enabling extensions

You can install your nbextension with the command:

jupyter nbextension install path/to/my_extension/

Where my_extension is the directory containing the Javascript files.
This will copy it to a Jupyter data directory (the exact location is platform
dependent - see Data files [http://jupyter.readthedocs.org/en/latest/system.html#jupyter-path]).

For development, you can use the --symlink flag to symlink your extension
rather than copying it, so there’s no need to reinstall after changes.

To use your extension, you’ll also need to enable it, which tells the
notebook interface to load it. You can do that with another command:

jupyter nbextension enable my_extension/main

The argument refers to the Javascript module containing your
load_ipython_extension function, which is my_extension/main.js in this
example. There is a corresponding disable command to stop using an
extension without uninstalling it.

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

examples/Notebook/rstversions/Notebook Basics.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

 View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Notebook%20Basics.ipynb]

Notebook Basics

Running the Notebook Server

The Jupyter notebook server is a custom web server that runs the
notebook web application. Most of the time, users run the notebook
server on their local computer using the command line interface.

Starting the notebook server using the command line

You can start the notebook server from the command line (Terminal on
Mac/Linux, CMD prompt on Windows) by running the following command:

jupyter notebook

This will print some information about the notebook server in your
terminal, including the URL of the web application (by default,
http://127.0.0.1:8888). It will then open your default web browser
to this URL.

When the notebook opens, you will see the notebook dashboard, which
will show a list of the notebooks, files, and subdirectories in the
directory where the notebook server was started (as seen in the next
section, below). Most of the time, you will want to start a notebook
server in the highest directory in your filesystem where notebooks can
be found. Often this will be your home directory.

Additional options

By default, the notebook server starts on port 8888. If port 8888 is
unavailable, the notebook server searchs the next available port.

You can also specify the port manually:

jupyter notebook --port 9999

Or start notebook server without opening a web browser.

jupyter notebook --no-browser

The notebook server has a number of other command line arguments that
can be displayed with the --help flag:

jupyter notebook --help

The Notebook dashboard

When you first start the notebook server, your browser will open to the
notebook dashboard. The dashboard serves as a home page for the
notebook. Its main purpose is to display the notebooks and files in the
current directory. For example, here is a screenshot of the dashboard
page for the examples directory in the Jupyter repository:

The top of the notebook list displays clickable breadcrumbs of the
current directory. By clicking on these breadcrumbs or on
sub-directories in the notebook list, you can navigate your file system.

To create a new notebook, click on the “New” button at the top of the
list and select a kernel from the dropdown (as seen below). Which
kernels are listed depend on what’s installed on the server. Some of the
kernels in the screenshot below may not exist as an option to you.

Notebooks and files can be uploaded to the current directory by dragging
a notebook file onto the notebook list or by the “click here” text above
the list.

The notebook list shows green “Running” text and a green notebook icon
next to running notebooks (as seen below). Notebooks remain running
until you explicitly shut them down; closing the notebook’s page is not
sufficient.

To shutdown, delete, duplicate, or rename a notebook check the checkbox
next to it and an array of controls will appear at the top of the
notebook list (as seen below). You can also use the same operations on
directories and files when applicable.

To see all of your running notebooks along with their directories, click
on the “Running” tab:

This view provides a convenient way to track notebooks that you start as
you navigate the file system in a long running notebook server.

Overview of the Notebook UI

If you create a new notebook or open an existing one, you will be taken
to the notebook user interface (UI). This UI allows you to run code and
author notebook documents interactively. The notebook UI has the
following main areas:

		Menu

		Toolbar

		Notebook area and cells

The notebook has an interactive tour of these elements that can be
started in the “Help:User Interface Tour” menu item.

Modal editor

Starting with IPython 2.0, the Jupyter Notebook has a modal user
interface. This means that the keyboard does different things depending
on which mode the Notebook is in. There are two modes: edit mode and
command mode.

Edit mode

Edit mode is indicated by a green cell border and a prompt showing in
the editor area:

When a cell is in edit mode, you can type into the cell, like a normal
text editor.

Enter edit mode by pressing Enter or using the mouse to click on a
cell’s editor area.

Command mode

Command mode is indicated by a grey cell border with a blue left margin:

When you are in command mode, you are able to edit the notebook as a
whole, but not type into individual cells. Most importantly, in command
mode, the keyboard is mapped to a set of shortcuts that let you perform
notebook and cell actions efficiently. For example, if you are in
command mode and you press c, you will copy the current cell - no
modifier is needed.

Don’t try to type into a cell in command mode; unexpected things will
happen!

Enter command mode by pressing Esc or using the mouse to click
outside a cell’s editor area.

Mouse navigation

All navigation and actions in the Notebook are available using the mouse
through the menubar and toolbar, which are both above the main Notebook
area:

The first idea of mouse based navigation is that cells can be selected
by clicking on them. The currently selected cell gets a grey or green
border depending on whether the notebook is in edit or command mode. If
you click inside a cell’s editor area, you will enter edit mode. If you
click on the prompt or output area of a cell you will enter command
mode.

If you are running this notebook in a live session (not on
http://nbviewer.jupyter.org) try selecting different cells and going
between edit and command mode. Try typing into a cell.

The second idea of mouse based navigation is that cell actions usually
apply to the currently selected cell. Thus if you want to run the code
in a cell, you would select it and click the

button in the toolbar or the “Cell:Run” menu item. Similarly, to copy a
cell you would select it and click the

button in the toolbar or the “Edit:Copy” menu item. With this simple
pattern, you should be able to do most everything you need with the
mouse.

Markdown and heading cells have one other state that can be modified
with the mouse. These cells can either be rendered or unrendered. When
they are rendered, you will see a nice formatted representation of the
cell’s contents. When they are unrendered, you will see the raw text
source of the cell. To render the selected cell with the mouse, click
the

button in the toolbar or the “Cell:Run” menu item. To unrender the
selected cell, double click on the cell.

Keyboard Navigation

The modal user interface of the Jupyter Notebook has been optimized for
efficient keyboard usage. This is made possible by having two different
sets of keyboard shortcuts: one set that is active in edit mode and
another in command mode.

The most important keyboard shortcuts are Enter, which enters edit
mode, and Esc, which enters command mode.

In edit mode, most of the keyboard is dedicated to typing into the
cell’s editor. Thus, in edit mode there are relatively few shortcuts. In
command mode, the entire keyboard is available for shortcuts, so there
are many more. The Help->``Keyboard Shortcuts`` dialog lists the
available shortcuts.

We recommend learning the command mode shortcuts in the following rough
order:

		Basic navigation: enter, shift-enter, up/k, down/j

		Saving the notebook: s

		Change Cell types: y, m, 1-6, t

		Cell creation: a, b

		Cell editing: x, c, v, d, z

		Kernel operations: i, 0 (press twice)

View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Notebook%20Basics.ipynb]

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

examples/Notebook/rstversions/Connecting with the Qt Console.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

 View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Connecting%20with%20the%20Qt%20Console.ipynb]

Connecting to an existing IPython kernel using the Qt Console

The Frontend/Kernel Model

The traditional IPython (ipython) consists of a single process that
combines a terminal based UI with the process that runs the users code.

While this traditional application still exists, the modern Jupyter
consists of two processes:

		Kernel: this is the process that runs the users code.

		Frontend: this is the process that provides the user interface where
the user types code and sees results.

Jupyter currently has 3 frontends:

		Terminal Console (ipython console)

		Qt Console (ipython qtconsole)

		Notebook (ipython notebook)

The Kernel and Frontend communicate over a ZeroMQ/JSON based messaging
protocol, which allows multiple Frontends (even of different types) to
communicate with a single Kernel. This opens the door for all sorts of
interesting things, such as connecting a Console or Qt Console to a
Notebook’s Kernel. For example, you may want to connect a Qt console to
your Notebook’s Kernel and use it as a help browser, calling ?? on
objects in the Qt console (whose pager is more flexible than the one in
the notebook).

This Notebook describes how you would connect another Frontend to a
Kernel that is associated with a Notebook.

Manual connection

To connect another Frontend to a Kernel manually, you first need to find
out the connection information for the Kernel using the
%connect_info magic:

%connect_info

You can see that this magic displays everything you need to connect to
this Notebook’s Kernel.

Automatic connection using a new Qt Console

You can also start a new Qt Console connected to your current Kernel by
using the %qtconsole magic. This will detect the necessary
connection information and start the Qt Console for you automatically.

a = 10

%qtconsole

View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Connecting%20with%20the%20Qt%20Console.ipynb]

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

examples/Notebook/rstversions/Typesetting Equations.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

 View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Typesetting%20Equations.ipynb]

The Markdown parser included in the Jupyter Notebook is MathJax-aware.
This means that you can freely mix in mathematical expressions using the
MathJax subset of Tex and
LaTeX [http://docs.mathjax.org/en/latest/tex.html#tex-support]. Some
examples from the MathJax
site [http://www.mathjax.org/demos/tex-samples/] are reproduced
below, as well as the Markdown+TeX source.

Motivating Examples

The Lorenz Equations

Source

\begin{align}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{align}

Display

The Cauchy-Schwarz Inequality

Source

\begin{equation*}
\left(\sum_{k=1}^n a_k b_k \right)^2 \leq \left(\sum_{k=1}^n a_k^2 \right) \left(\sum_{k=1}^n b_k^2 \right)
\end{equation*}

Display

A Cross Product Formula

Source

\begin{equation*}
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
\end{vmatrix}
\end{equation*}

Display

The probability of getting (k) heads when flipping (n) coins is

Source

\begin{equation*}
P(E) = {n \choose k} p^k (1-p)^{ n-k}
\end{equation*}

Display

An Identity of Ramanujan

Source

\begin{equation*}
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } }
\end{equation*}

Display

A Rogers-Ramanujan Identity

Source

\begin{equation*}
1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},
\quad\quad \text{for $|q|<1$}.
\end{equation*}

Display

Maxwell’s Equations

Source

\begin{align}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{align}

Display

Equation Numbering and References

Equation numbering and referencing will be available in a future version
of the Jupyter notebook.

Inline Typesetting (Mixing Markdown and TeX)

While display equations look good for a page of samples, the ability to
mix math and formatted text in a paragraph is also important.

Source

This expression $\sqrt{3x-1}+(1+x)^2$ is an example of a TeX inline equation in a [Markdown-formatted](http://daringfireball.net/projects/markdown/) sentence.

Display

This expression \(\sqrt{3x-1}+(1+x)^2\) is an example of a TeX
inline equation in a
Markdown-formatted [http://daringfireball.net/projects/markdown/]
sentence.

Other Syntax

You will notice in other places on the web that $$ are needed
explicitly to begin and end MathJax typesetting. This is not
required if you will be using TeX environments, but the Jupyter notebook
will accept this syntax on legacy notebooks.

Source

$$
\begin{array}{c}
y_1 \\\
y_2 \mathtt{t}_i \\\
z_{3,4}
\end{array}
$$

$$
\begin{array}{c}
y_1 \cr
y_2 \mathtt{t}_i \cr
y_{3}
\end{array}
$$

$$\begin{eqnarray}
x' &=& &x \sin\phi &+& z \cos\phi \\
z' &=& - &x \cos\phi &+& z \sin\phi \\
\end{eqnarray}$$

$$
x=4
$$

Display

\[\begin{split}\begin{array}{c}
y_1 \\\
y_2 \mathtt{t}_i \\\
z_{3,4}
\end{array}\end{split}\]

\[\begin{array}{c}
y_1 \cr
y_2 \mathtt{t}_i \cr
y_{3}
\end{array}\]

\[\begin{split}\begin{eqnarray}
x' &=& &x \sin\phi &+& z \cos\phi \\
z' &=& - &x \cos\phi &+& z \sin\phi \\
\end{eqnarray}\end{split}\]

\[x=4\]

View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Typesetting%20Equations.ipynb]

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

examples/Notebook/rstversions/index.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

 View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Examples%20and%20Tutorials%20Index.ipynb]

Examples and Tutorials

This portion of the documentation was generated from notebook files. You
can download the original interactive notebook files using the links at
the tops and bottoms of the pages.

Tutorials

		What is the Jupyter Notebook?

		Notebook Basics

		Running Code

		Markdown Cells

		Heading 1

		Heading 2

		Keyboard Shortcut Customization

		Embracing web standards

Examples

		Importing Jupyter Notebooks as Modules

		Connecting to an existing IPython kernel using the Qt Console

		Motivating Examples

		Equation Numbering and References

		Other Syntax

View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Examples%20and%20Tutorials%20Index.ipynb]

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

_images/find-replace-41.png
Find and Replace

Return

3 matches

Run a code cell using ~Shift-EnterReturn” or pressing the
* “Alt-EnterReturn” runs the current cell a...

* “Ctrl-EnterReturn” run the current cell an...

Replace All

_images/command-palette-41.png
find Q

jupyter-notebook command group

find and replace (command)

_images/multi-select-41.png
In [

In [

1|8

1|8

Code cells allow you to enter and run code

Run a code cell using shift-Enter or pressing the M button in the toolbar above:
a =10

print(a)

There are two other keyboard shortcuts for running code:

« Alt-Enter runs the current cell and inserts a new one below.
e Ctrl-Enter run the current cell and enters command mode.

examples/Notebook/rstversions/Importing Notebooks.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

 View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Importing%20Notebooks.ipynb]

Importing Jupyter Notebooks as Modules

It is a common problem that people want to import code from Jupyter
Notebooks. This is made difficult by the fact that Notebooks are not
plain Python files, and thus cannot be imported by the regular Python
machinery.

Fortunately, Python provides some fairly sophisticated
hooks [http://www.python.org/dev/peps/pep-0302/] into the import
machinery, so we can actually make Jupyter notebooks importable without
much difficulty, and only using public APIs.

import io, os, sys, types

from IPython import get_ipython
from IPython.nbformat import current
from IPython.core.interactiveshell import InteractiveShell

Import hooks typically take the form of two objects:

		a Module Loader, which takes a module name (e.g.
'IPython.display'), and returns a Module

		a Module Finder, which figures out whether a module might exist,
and tells Python what Loader to use

def find_notebook(fullname, path=None):
 """find a notebook, given its fully qualified name and an optional path

 This turns "foo.bar" into "foo/bar.ipynb"
 and tries turning "Foo_Bar" into "Foo Bar" if Foo_Bar
 does not exist.
 """
 name = fullname.rsplit('.', 1)[-1]
 if not path:
 path = ['']
 for d in path:
 nb_path = os.path.join(d, name + ".ipynb")
 if os.path.isfile(nb_path):
 return nb_path
 # let import Notebook_Name find "Notebook Name.ipynb"
 nb_path = nb_path.replace("_", " ")
 if os.path.isfile(nb_path):
 return nb_path

Notebook Loader

Here we have our Notebook Loader. It’s actually quite simple - once we
figure out the filename of the module, all it does is:

		load the notebook document into memory

		create an empty Module

		execute every cell in the Module namespace

Since IPython cells can have extended syntax, the IPython transform is
applied to turn each of these cells into their pure-Python counterparts
before executing them. If all of your notebook cells are pure-Python,
this step is unnecessary.

class NotebookLoader(object):
 """Module Loader for Jupyter Notebooks"""
 def __init__(self, path=None):
 self.shell = InteractiveShell.instance()
 self.path = path

 def load_module(self, fullname):
 """import a notebook as a module"""
 path = find_notebook(fullname, self.path)

 print ("importing Jupyter notebook from %s" % path)

 # load the notebook object
 with io.open(path, 'r', encoding='utf-8') as f:
 nb = current.read(f, 'json')

 # create the module and add it to sys.modules
 # if name in sys.modules:
 # return sys.modules[name]
 mod = types.ModuleType(fullname)
 mod.__file__ = path
 mod.__loader__ = self
 mod.__dict__['get_ipython'] = get_ipython
 sys.modules[fullname] = mod

 # extra work to ensure that magics that would affect the user_ns
 # actually affect the notebook module's ns
 save_user_ns = self.shell.user_ns
 self.shell.user_ns = mod.__dict__

 try:
 for cell in nb.worksheets[0].cells:
 if cell.cell_type == 'code' and cell.language == 'python':
 # transform the input to executable Python
 code = self.shell.input_transformer_manager.transform_cell(cell.input)
 # run the code in themodule
 exec(code, mod.__dict__)
 finally:
 self.shell.user_ns = save_user_ns
 return mod

The Module Finder

The finder is a simple object that tells you whether a name can be
imported, and returns the appropriate loader. All this one does is
check, when you do:

import mynotebook

it checks whether mynotebook.ipynb exists. If a notebook is found,
then it returns a NotebookLoader.

Any extra logic is just for resolving paths within packages.

class NotebookFinder(object):
 """Module finder that locates Jupyter Notebooks"""
 def __init__(self):
 self.loaders = {}

 def find_module(self, fullname, path=None):
 nb_path = find_notebook(fullname, path)
 if not nb_path:
 return

 key = path
 if path:
 # lists aren't hashable
 key = os.path.sep.join(path)

 if key not in self.loaders:
 self.loaders[key] = NotebookLoader(path)
 return self.loaders[key]

Register the hook

Now we register the NotebookFinder with sys.meta_path

sys.meta_path.append(NotebookFinder())

After this point, my notebooks should be importable.

Let’s look at what we have in the CWD:

ls nbpackage

So I should be able to import nbimp.mynotebook.

Aside: displaying notebooks

Here is some simple code to display the contents of a notebook with
syntax highlighting, etc.

from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter

from IPython.display import display, HTML

formatter = HtmlFormatter()
lexer = PythonLexer()

publish the CSS for pygments highlighting
display(HTML("""
<style type='text/css'>
%s
</style>
""" % formatter.get_style_defs()
))

def show_notebook(fname):
 """display a short summary of the cells of a notebook"""
 with io.open(fname, 'r', encoding='utf-8') as f:
 nb = current.read(f, 'json')
 html = []
 for cell in nb.worksheets[0].cells:
 html.append("<h4>%s cell</h4>" % cell.cell_type)
 if cell.cell_type == 'code':
 html.append(highlight(cell.input, lexer, formatter))
 else:
 html.append("<pre>%s</pre>" % cell.source)
 display(HTML('\n'.join(html)))

show_notebook(os.path.join("nbpackage", "mynotebook.ipynb"))

So my notebook has a heading cell and some code cells, one of which
contains some IPython syntax.

Let’s see what happens when we import it

from nbpackage import mynotebook

Hooray, it imported! Does it work?

mynotebook.foo()

Hooray again!

Even the function that contains IPython syntax works:

mynotebook.has_ip_syntax()

Notebooks in packages

We also have a notebook inside the nb package, so let’s make sure
that works as well.

ls nbpackage/nbs

Note that the __init__.py is necessary for nb to be considered a
package, just like usual.

show_notebook(os.path.join("nbpackage", "nbs", "other.ipynb"))

from nbpackage.nbs import other
other.bar(5)

So now we have importable notebooks, from both the local directory and
inside packages.

I can even put a notebook inside IPython, to further demonstrate that
this is working properly:

import shutil
from IPython.utils.path import get_ipython_package_dir

utils = os.path.join(get_ipython_package_dir(), 'utils')
shutil.copy(os.path.join("nbpackage", "mynotebook.ipynb"),
 os.path.join(utils, "inside_ipython.ipynb")
)

and import the notebook from IPython.utils

from IPython.utils import inside_ipython
inside_ipython.whatsmyname()

This approach can even import functions and classes that are defined in
a notebook using the %%cython magic.

View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Importing%20Notebooks.ipynb]

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

_images/jupyter-notebook-default.png
ece o ©.0 ojnle
ZJupyter welcome to Python wnsaved changes) a

Fle Edit View Inset Cel Kemel Help Menubar | Python3 O

+ 3 @ B A ¥ | M W C| Makdown 4| | @ || Celoolbar | Toolbar Cell Mode Indicator | Kernel Indicator

ZJupyter @rackspace

Welcome to the Temporary Notebook (tmpnb) service!
This Notebook Server was launched just for you. It's a temporary way for you to try out a recent development version of the IPython/Jupyter notebook.

WARNING
Don't rely on this server for anything you want to last - your server will be deleted after 10 minutes of inactivity.

Your server is hosted thanks to Rackspace, on their on-demand bare metal servers, OnVietal.

Cell In Command Mode
Run some Python code!

To run the code below:

1. Glick on the cell to select it.
2. Press SHIFT+ENTER on your keyboard or press the play button (B) in the toolbar above.

Afull tutorial for using the notebook interface is available here.

In []: tmatplotlib inline

import pandas as pd

import numpy as np
et bl et] ik

examples/Notebook/rstversions/What is the Jupyter Notebook.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

 View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/What%20is%20the%20Jupyter%20Notebook.ipynb]

What is the Jupyter Notebook?

Introduction

The Jupyter Notebook is an interactive computing environment that
enables users to author notebook documents that include: - Live code -
Interactive widgets - Plots - Narrative text - Equations - Images -
Video

These documents provide a complete and self-contained record of a
computation that can be converted to various formats and shared with
others using email, Dropbox [http://dropbox.com], version control
systems (like git/GitHub [http://github.com]) or
nbviewer.jupyter.org [http://nbviewer.jupyter.org].

Components

The Jupyter Notebook combines three components:

		The notebook web application: An interactive web application for
writing and running code interactively and authoring notebook
documents.

		Kernels: Separate processes started by the notebook web
application that runs users’ code in a given language and returns
output back to the notebook web application. The kernel also handles
things like computations for interactive widgets, tab completion and
introspection.

		Notebook documents: Self-contained documents that contain a
representation of all content visible in the notebook web
application, including inputs and outputs of the computations,
narrative text, equations, images, and rich media representations of
objects. Each notebook document has its own kernel.

Notebook web application

The notebook web application enables users to:

		Edit code in the browser, with automatic syntax highlighting,
indentation, and tab completion/introspection.

		Run code from the browser, with the results of computations
attached to the code which generated them.

		See the results of computations with rich media representations,
such as HTML, LaTeX, PNG, SVG, PDF, etc.

		Create and use interactive JavaScript widgets, which bind
interactive user interface controls and visualizations to reactive
kernel side computations.

		Author narrative text using the
Markdown [https://daringfireball.net/projects/markdown/] markup
language.

		Build hierarchical documents that are organized into sections
with different levels of headings.

		Include mathematical equations using LaTeX syntax in Markdown,
which are rendered in-browser by
MathJax [http://www.mathjax.org/].

Kernels

Through Jupyter’s kernel and messaging architecture, the Notebook allows
code to be run in a range of different programming languages. For each
notebook document that a user opens, the web application starts a kernel
that runs the code for that notebook. Each kernel is capable of running
code in a single programming language and there are kernels available in
the following languages:

		Python(https://github.com/ipython/ipython)

		Julia (https://github.com/JuliaLang/IJulia.jl)

		R (https://github.com/takluyver/IRkernel)

		Ruby (https://github.com/minrk/iruby)

		Haskell (https://github.com/gibiansky/IHaskell)

		Scala (https://github.com/Bridgewater/scala-notebook)

		node.js (https://gist.github.com/Carreau/4279371)

		Go (https://github.com/takluyver/igo)

The default kernel runs Python code. The notebook provides a simple way
for users to pick which of these kernels is used for a given notebook.

Each of these kernels communicate with the notebook web application and
web browser using a JSON over ZeroMQ/WebSockets message protocol that is
described
here [http://ipython.org/ipython-doc/dev/development/messaging.html].
Most users don’t need to know about these details, but it helps to
understand that “kernels run code.”

Notebook documents

Notebook documents contain the inputs and outputs of an interactive
session as well as narrative text that accompanies the code but is
not meant for execution. Rich output generated by running code,
including HTML, images, video, and plots, is embeddeed in the notebook,
which makes it a complete and self-contained record of a computation.

When you run the notebook web application on your computer, notebook
documents are just files on your local filesystem with a ``.ipynb``
extension. This allows you to use familiar workflows for organizing
your notebooks into folders and sharing them with others.

Notebooks consist of a linear sequence of cells. There are four
basic cell types:

		Code cells: Input and output of live code that is run in the
kernel

		Markdown cells: Narrative text with embedded LaTeX equations

		Heading cells: 6 levels of hierarchical organization and
formatting

		Raw cells: Unformatted text that is included, without
modification, when notebooks are converted to different formats using
nbconvert

Internally, notebook documents are
`JSON <http://en.wikipedia.org/wiki/JSON>`__ data with binary
values `base64 <http://en.wikipedia.org/wiki/Base64>`__ encoded. This
allows them to be read and manipulated programmatically by any
programming language. Because JSON is a text format, notebook documents
are version control friendly.

Notebooks can be exported to different static formats including
HTML, reStructeredText, LaTeX, PDF, and slide shows
(reveal.js [http://lab.hakim.se/reveal-js/#/]) using Jupyter’s
nbconvert utility.

Furthermore, any notebook document available from a public URL on or
GitHub can be shared via nbviewer [http://nbviewer.ipython.org].
This service loads the notebook document from the URL and renders it as
a static web page. The resulting web page may thus be shared with others
without their needing to install the Jupyter Notebook.

View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/What%20is%20the%20Jupyter%20Notebook.ipynb]

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

_images/new-notebook.gif
Z Jupyter

Files | Running Clusters

Select items to perform actions on them.

0[]
03 basic

3 citations

3 custom_fiter

3 custom_latex_cell_style
3 custom_preprocessor
3 custom_template

3 hr_cell_style

3 images

3 latex_cell_style

3 notebook_cell_style

P

Upload || New +
3

_images/jupyter-notebook-edit.png
eoe [en] ® 0 e localhost ()
~
—Ju pyter Welcome to Python Last Checkpoint: Last Tuesday at 2:34 PM (autosaved) @
File Edit View Inset Cell Kemel Help # |Python3 O

B+ Edit Mode Indicator

@ B 4 ¥ MW W C | Markdown 4 Cell Toolbar: | None

<div class="clearfix" style="padding: 10px; padding-left: Opx'>
https://raw.githubusercontent.com/jupyter/nature-demo/master/images/jupyter-logo.png" widt!
display: inline-block; margin-top: 5px;'>

<img src="https://cloud.githubusercontent.con/assets/836375/4916141/2732892e-64d6-
11e4-980f-11afcfo3ca3l.png" width="150px" class="pull-right" style="display: inline-block; margin: Opx;'>

</div>

150px"

Welcome to the Temporary Notebook (tmpnb) service!

This Notebook Server was **launched just for yout+. It's a temporary way for you to try out a recent development
version of the IPython/Jupyter notebook.

<div class="alert alert-warning" role="alert' styl
<p>**WARNINGH*</p>

“margin: 10px">

<p>Don't rely on this server for anything you want to last - your server will be *deleted after 10 minutes of
inactivity*.</p>
</div>

Your server is hosted thanks to [Rackspace](http://bit.ly/tmpnbdevrax), on their on-demand bare metal servers,
OonMetal] (http://bit.ly/onmetal).

Cell In Edit Mode
Run some Python code!

To run the code below:

1. Glick on the cell to select it.
2. Press SHIFT+ENTER on your keyboard or press the play button (B) in the toolbar above.

A fodl vl for 1 ainn Hha nedahank tarfars in auaiiahia harm

search.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

_images/jupyter-file-editor.png
e0e [in] ® 0 6 localhost o & O
= Ju pyter my-awesome-blog-post.md v a few seconds ago
Fle Edt Vew Language Markdown

This is an awesome blog post.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras suscipit, magna quis venenatis vehicula, lectus urna vehicula magna,
in vulputate velit magna vel turpis. Sed tristique feugiat felis, id interdum nisl. Nulla facilisi. Pellentesque mollis mi non
arcu pellentesque, quis fringilla tellus condimentum. Donec ultricies rutrum justo, eu malesuada dolor. Duis nibh neque, consequat
sit amet sem nec, ultficies congue metus. Integer aliquam urna vitae felis pharetra, ut efficitur metus egestas. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec purus sapien, euismod sit amet leo vel,
pretiun consequat augue. Nunc at mauris non magna luctus ullamcorper a ac leo. Maecenas molestie sem eget molestie porttitor. Duis
ultrices felis et dui rutrum, eget condimentum lorem elementum. Integer tristique bibendum ex, quis interdum mauris ultricies
quis. Nulla aliquam sed risus ac ullamcorper.

Integer fermentum, quam vitae luctus posuere, erat libero luctus diam, eu pellentesque velit sem quis nisl. Maecenas cursus lorem
vitae condimentum mollis. Mauris sed aliguet nisl. Fusce maximus at velit ac tristique. Suspendisse purus massa, pharetra a sapien
eget, pulvinar suscipit metus. Mauris pulvinar ipsum varius, consectetur elit at, interdum lectus. Cras pharetra enim lacus,
sagittis eleifend enim auctor non. Ut hendrerit nisi tristique felis blandit interdum.

Etiam suscipit sodales egestas. In bibendum placerat lorem, sit amet bibendum augue rutrum in. Vestibulum vulputate lorem dui,
quis tristique elit varius et. Nam imperdiet dui non neque convallis pharetra. Donec leo massa, faucibus id neque quis, posuere
lobortis enim. Quisque vel dui et tortor viverra ultrices. Praesent mattis euismod magna ut imperdiet. Nullam pretium suscipit
ligula, in mollis erat gravida vitae. Vivamus eget dui eros. Mauris sit amet nibh sed augue fermentum elementum ut vel urna.
Vestibulum aliquam condimentum auctor.

Nulla ac neque non arcu lacinia tristigue in at eros. Sed euismod enim ac arcu hendrerit, mattis tempus dui dapibus. Nunc
elementum lorem turpis, quis dignissim sem dapibus sed. Duis vitae est at ligula faucibus pretium. Ut ac suscipit libero. In
molestie diam ut nisl varius, at malesuada odio condimentum. Vestibulum placerat at sem a mattis.

Nullam laoreet iaculis magna ac iaculis. Curabitur gravida pulvinar nibh non blandit. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia Curae; Vivamus ornare dui enim, non tincidunt nulla volutpat non. Aliquam scelerisque nisi
a orci tempor eleifend. Etiam placerat commodo nunc, lacinia ultrices eros faucibus ut. Fusce imperdiet purus velit, eget porta
nisi pretium ut. Sed varius est nec mi sagittis, eget maximus libero consequat. Mauris ac eros volutpat, finibus ligula et,
posuere justo.

examples/Notebook/rstversions/Working With Markdown Cells.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

 View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Working%20With%20Markdown%20Cells.ipynb]

Markdown Cells

Text can be added to Jupyter Notebooks using Markdown cells. Markdown is
a popular markup language that is a superset of HTML. Its specification
can be found here:

http://daringfireball.net/projects/markdown/

Markdown basics

You can make text italic or bold.

You can build nested itemized or enumerated lists:

		One
		Sublist
		This

		Sublist - That - The other thing

		Two

		Sublist

		Three

		Sublist

Now another list:

		Here we go
		Sublist

		Sublist

		There we go

		Now this

You can add horizontal rules:

Here is a blockquote:

Beautiful is better than ugly. Explicit is better than implicit.
Simple is better than complex. Complex is better than complicated.
Flat is better than nested. Sparse is better than dense. Readability
counts. Special cases aren’t special enough to break the rules.
Although practicality beats purity. Errors should never pass
silently. Unless explicitly silenced. In the face of ambiguity,
refuse the temptation to guess. There should be one– and preferably
only one –obvious way to do it. Although that way may not be
obvious at first unless you’re Dutch. Now is better than never.
Although never is often better than right now. If the
implementation is hard to explain, it’s a bad idea. If the
implementation is easy to explain, it may be a good idea. Namespaces
are one honking great idea – let’s do more of those!

And shorthand for links:

Jupyter’s website [http://jupyter.org]

Headings

You can add headings by starting a line with one (or multiple) #
followed by a space, as in the following example:

Heading 1

Heading 2

Heading 2.1

Heading 2.2

Embedded code

You can embed code meant for illustration instead of execution in
Python:

def f(x):
 """a docstring"""
 return x**2

or other languages:

if (i=0; i<n; i++) {
 printf("hello %d\n", i);
 x += 4;
}

LaTeX equations

Courtesy of MathJax, you can include mathematical expressions both
inline: \(e^{i\pi} + 1 = 0\) and displayed:

\[e^x=\sum_{i=0}^\infty \frac{1}{i!}x^i\]

Inline expressions can be added by surrounding the latex code with
$:

$e^{i\pi} + 1 = 0$

Expressions on their own line are surrounded by $$:

$$e^x=\sum_{i=0}^\infty \frac{1}{i!}x^i$$

Github flavored markdown (GFM)

The Notebook webapp support Github flavored markdown meaning that you
can use triple backticks for code blocks


```python
print "Hello World"
```

```javascript
console.log("Hello World")
```


Gives

print "Hello World"

console.log("Hello World")

And a table like this :

This	is
a	table

A nice Html Table

		This
		is

		a
		table

General HTML

Because Markdown is a superset of HTML you can even add things like HTML
tables:

		Header 1

		Header 2

		row 1, cell 1

		row 1, cell 2

		row 2, cell 1

		row 2, cell 2

Local files

If you have local files in your Notebook directory, you can refer to
these files in Markdown cells directly:

[subdirectory/]<filename>

For example, in the images folder, we have the Python logo:

and a video with the HTML5 video tag:

<video controls src="images/animation.m4v" />

These do not embed the data into the notebook file, and require that the
files exist when you are viewing the notebook.

Security of local files

Note that this means that the Jupyter notebook server also acts as a
generic file server for files inside the same tree as your notebooks.
Access is not granted outside the notebook folder so you have strict
control over what files are visible, but for this reason it is highly
recommended that you do not run the notebook server with a notebook
directory at a high level in your filesystem (e.g. your home directory).

When you run the notebook in a password-protected manner, local file
access is restricted to authenticated users unless read-only views are
active.

View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Working%20With%20Markdown%20Cells.ipynb]

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_images/cell-toolbar-41.png
View Insert

Toggle Header
Toggle Toolbar
Cell Toolbar

Cell

Kernel Help

B C Code

None
Edit Metadata
Raw Cell Format

Slideshow

«

_images/jupyter-notebook-dashboard.png
e0e < [x] ® 0 e localhost 3 o)t a

= Jupyter

Fies = Running Clusters

‘Select items to perform actions on them. Upload New~ £
0 - . File Tree
) [data
O [dev

O & Exploratory Data Analytics.ipynb

O & Lights Outipynb

& Welcome to Pythonipynb Running Notebook Running

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

examples/Notebook/rstversions/Running Code.html

 Navigation

 		
 index

 		Jupyter Notebook 5.0.0.dev documentation »

 View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Running%20Code.ipynb]

Running Code

First and foremost, the Jupyter Notebook is an interactive environment
for writing and running code. The notebook is capable of running code in
a wide range of languages. However, each notebook is associated with a
single kernel. This notebook is associated with the IPython kernel,
therefor runs Python code.

Code cells allow you to enter and run code

Run a code cell using Shift-Enter or pressing the

button in the toolbar above:

a = 10

print(a)

There are two other keyboard shortcuts for running code:

		Alt-Enter runs the current cell and inserts a new one below.

		Ctrl-Enter run the current cell and enters command mode.

Managing the Kernel

Code is run in a separate process called the Kernel. The Kernel can be
interrupted or restarted. Try running the following cell and then hit
the

button in the toolbar above.

import time
time.sleep(10)

If the Kernel dies you will be prompted to restart it. Here we call the
low-level system libc.time routine with the wrong argument via ctypes to
segfault the Python interpreter:

import sys
from ctypes import CDLL
This will crash a Linux or Mac system
equivalent calls can be made on Windows
dll = 'dylib' if sys.platform == 'darwin' else 'so.6'
libc = CDLL("libc.%s" % dll)
libc.time(-1) # BOOM!!

Cell menu

The “Cell” menu has a number of menu items for running code in different
ways. These includes:

		Run and Select Below

		Run and Insert Below

		Run All

		Run All Above

		Run All Below

Restarting the kernels

The kernel maintains the state of a notebook’s computations. You can
reset this state by restarting the kernel. This is done by clicking on
the

in the toolbar above.

sys.stdout and sys.stderr

The stdout and stderr streams are displayed as text in the output area.

print("hi, stdout")

from __future__ import print_function
print('hi, stderr', file=sys.stderr)

Output is asynchronous

All output is displayed asynchronously as it is generated in the Kernel.
If you execute the next cell, you will see the output one piece at a
time, not all at the end.

import time, sys
for i in range(8):
 print(i)
 time.sleep(0.5)

Large outputs

To better handle large outputs, the output area can be collapsed. Run
the following cell and then single- or double- click on the active area
to the left of the output:

for i in range(50):
 print(i)

Beyond a certain point, output will scroll automatically:

for i in range(500):
 print(2**i - 1)

View the original notebook on nbviewer [http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Running%20Code.ipynb]

 © Copyright 2015, Jupyter Team, https://jupyter.org.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/images/jupyter-notebook-default.png
ece o ©.0 ojnle
ZJupyter welcome to Python wnsaved changes) a

Fle Edit View Inset Cel Kemel Help Menubar | Python3 O

+ 3 @ B A ¥ | M W C| Makdown 4| | @ || Celoolbar | Toolbar Cell Mode Indicator | Kernel Indicator

ZJupyter @rackspace

Welcome to the Temporary Notebook (tmpnb) service!
This Notebook Server was launched just for you. It's a temporary way for you to try out a recent development version of the IPython/Jupyter notebook.

WARNING
Don't rely on this server for anything you want to last - your server will be deleted after 10 minutes of inactivity.

Your server is hosted thanks to Rackspace, on their on-demand bare metal servers, OnVietal.

Cell In Command Mode
Run some Python code!

To run the code below:

1. Glick on the cell to select it.
2. Press SHIFT+ENTER on your keyboard or press the play button (B) in the toolbar above.

Afull tutorial for using the notebook interface is available here.

In []: tmatplotlib inline

import pandas as pd

import numpy as np
et bl et] ik

_static/images/find-replace-41.png
Find and Replace

Return

3 matches

Run a code cell using ~Shift-EnterReturn” or pressing the
* “Alt-EnterReturn” runs the current cell a...

* “Ctrl-EnterReturn” run the current cell an...

Replace All

_static/images/multi-select-41.png
In [

In [

1|8

1|8

Code cells allow you to enter and run code

Run a code cell using shift-Enter or pressing the M button in the toolbar above:
a =10

print(a)

There are two other keyboard shortcuts for running code:

« Alt-Enter runs the current cell and inserts a new one below.
e Ctrl-Enter run the current cell and enters command mode.

_static/images/new-notebook.gif
Z Jupyter

Files | Running Clusters

Select items to perform actions on them.

0[]
03 basic

3 citations

3 custom_fiter

3 custom_latex_cell_style
3 custom_preprocessor
3 custom_template

3 hr_cell_style

3 images

3 latex_cell_style

3 notebook_cell_style

P

Upload || New +
3

_static/images/jupyter-notebook-edit.png
eoe [en] ® 0 e localhost ()
~
—Ju pyter Welcome to Python Last Checkpoint: Last Tuesday at 2:34 PM (autosaved) @
File Edit View Inset Cell Kemel Help # |Python3 O

B+ Edit Mode Indicator

@ B 4 ¥ MW W C | Markdown 4 Cell Toolbar: | None

<div class="clearfix" style="padding: 10px; padding-left: Opx'>
https://raw.githubusercontent.com/jupyter/nature-demo/master/images/jupyter-logo.png" widt!
display: inline-block; margin-top: 5px;'>

<img src="https://cloud.githubusercontent.con/assets/836375/4916141/2732892e-64d6-
11e4-980f-11afcfo3ca3l.png" width="150px" class="pull-right" style="display: inline-block; margin: Opx;'>

</div>

150px"

Welcome to the Temporary Notebook (tmpnb) service!

This Notebook Server was **launched just for yout+. It's a temporary way for you to try out a recent development
version of the IPython/Jupyter notebook.

<div class="alert alert-warning" role="alert' styl
<p>**WARNINGH*</p>

“margin: 10px">

<p>Don't rely on this server for anything you want to last - your server will be *deleted after 10 minutes of
inactivity*.</p>
</div>

Your server is hosted thanks to [Rackspace](http://bit.ly/tmpnbdevrax), on their on-demand bare metal servers,
OonMetal] (http://bit.ly/onmetal).

Cell In Edit Mode
Run some Python code!

To run the code below:

1. Glick on the cell to select it.
2. Press SHIFT+ENTER on your keyboard or press the play button (B) in the toolbar above.

A fodl vl for 1 ainn Hha nedahank tarfars in auaiiahia harm

_static/images/command-palette-41.png
find Q

jupyter-notebook command group

find and replace (command)

_static/images/jupyter-notebook-dashboard.png
e0e < [x] ® 0 e localhost 3 o)t a

= Jupyter

Fies = Running Clusters

‘Select items to perform actions on them. Upload New~ £
0 - . File Tree
) [data
O [dev

O & Exploratory Data Analytics.ipynb

O & Lights Outipynb

& Welcome to Pythonipynb Running Notebook Running

_static/images/jupyter-file-editor.png
e0e [in] ® 0 6 localhost o & O
= Ju pyter my-awesome-blog-post.md v a few seconds ago
Fle Edt Vew Language Markdown

This is an awesome blog post.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras suscipit, magna quis venenatis vehicula, lectus urna vehicula magna,
in vulputate velit magna vel turpis. Sed tristique feugiat felis, id interdum nisl. Nulla facilisi. Pellentesque mollis mi non
arcu pellentesque, quis fringilla tellus condimentum. Donec ultricies rutrum justo, eu malesuada dolor. Duis nibh neque, consequat
sit amet sem nec, ultficies congue metus. Integer aliquam urna vitae felis pharetra, ut efficitur metus egestas. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec purus sapien, euismod sit amet leo vel,
pretiun consequat augue. Nunc at mauris non magna luctus ullamcorper a ac leo. Maecenas molestie sem eget molestie porttitor. Duis
ultrices felis et dui rutrum, eget condimentum lorem elementum. Integer tristique bibendum ex, quis interdum mauris ultricies
quis. Nulla aliquam sed risus ac ullamcorper.

Integer fermentum, quam vitae luctus posuere, erat libero luctus diam, eu pellentesque velit sem quis nisl. Maecenas cursus lorem
vitae condimentum mollis. Mauris sed aliguet nisl. Fusce maximus at velit ac tristique. Suspendisse purus massa, pharetra a sapien
eget, pulvinar suscipit metus. Mauris pulvinar ipsum varius, consectetur elit at, interdum lectus. Cras pharetra enim lacus,
sagittis eleifend enim auctor non. Ut hendrerit nisi tristique felis blandit interdum.

Etiam suscipit sodales egestas. In bibendum placerat lorem, sit amet bibendum augue rutrum in. Vestibulum vulputate lorem dui,
quis tristique elit varius et. Nam imperdiet dui non neque convallis pharetra. Donec leo massa, faucibus id neque quis, posuere
lobortis enim. Quisque vel dui et tortor viverra ultrices. Praesent mattis euismod magna ut imperdiet. Nullam pretium suscipit
ligula, in mollis erat gravida vitae. Vivamus eget dui eros. Mauris sit amet nibh sed augue fermentum elementum ut vel urna.
Vestibulum aliquam condimentum auctor.

Nulla ac neque non arcu lacinia tristigue in at eros. Sed euismod enim ac arcu hendrerit, mattis tempus dui dapibus. Nunc
elementum lorem turpis, quis dignissim sem dapibus sed. Duis vitae est at ligula faucibus pretium. Ut ac suscipit libero. In
molestie diam ut nisl varius, at malesuada odio condimentum. Vestibulum placerat at sem a mattis.

Nullam laoreet iaculis magna ac iaculis. Curabitur gravida pulvinar nibh non blandit. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia Curae; Vivamus ornare dui enim, non tincidunt nulla volutpat non. Aliquam scelerisque nisi
a orci tempor eleifend. Etiam placerat commodo nunc, lacinia ultrices eros faucibus ut. Fusce imperdiet purus velit, eget porta
nisi pretium ut. Sed varius est nec mi sagittis, eget maximus libero consequat. Mauris ac eros volutpat, finibus ligula et,
posuere justo.

_static/images/cell-toolbar-41.png
View Insert

Toggle Header
Toggle Toolbar
Cell Toolbar

Cell

Kernel Help

B C Code

None
Edit Metadata
Raw Cell Format

Slideshow

«

